Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates

Neil D. Rawlings1, Alan J. Barrett2, Alex Bateman1

1 EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, 2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 1.25
DOI:  10.1002/0471250953.bi0125s48
Online Posting Date:  December, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

MEROPS is a database of proteolytic enzymes as well as their inhibitors and substrates. Proteolytic enzymes and protein inhibitors are organized into protein domain families. In turn, families are organized into clans. Each peptidase, inhibitor, family, and clan has associated annotation, a multiple sequence alignment, a phylogenetic tree, literature references, and links to other databases. Interactions between proteolytic enzymes and inhibitors and between proteolytic enzymes and substrates are also presented. The entries in MEROPS are available via the World Wide Web. This unit contains detailed information on how to access and utilize the information present in the MEROPS database. Details on running MEROPS both remotely and locally are presented. © 2014 by John Wiley & Sons, Inc.

Keywords: proteolytic enzyme; peptidase; protease; inhibitor; substrate

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Searching Merops by Sequence
  • Basic Protocol 2: Searching Merops by Name, Identifier, Accession, or Publication
  • Basic Protocol 3: Exploring Peptidase Specificity
  • Basic Protocol 4: Exploring Peptidase or Inhibitor Secondary and Tertiary Structure
  • Basic Protocol 5: Exploring Evolutionary Relationships
  • Guidelines for Understanding Results
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ahmad, M., Takino, T., Miyamori, H., Yoshizaki, T., Furukawa, M. and Sato, H. 2006. Cleavage of amyloid‐beta precursor protein (APP) by membrane‐type matrix metalloproteinases. J. Biochem. 139:517‐526.
  Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403‐410.
  Andreeva, A. and Murzin, A.G. 2010. Structural classification of proteins and structural genomics: New insights into protein folding and evolution. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66:1190‐1197.
  Barrett, A.J. and Rawlings, N.D. 2007. ‘Species’ of peptidases. Biol. Chem. 388:1151‐1157.
  Bovine Genome Sequencing and Analysis Consortium. 2009. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 324:522‐528.
  Buller, A.R. and Townsend, C.A. 2013. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc. Natl. Acad. Sci. U.S.A. 110:E653‐E661.
  Cleynen, I., Jüni, P., Bekkering, G.E., Nüesch, E., Mendes, C.T., Schmied, S., Wyder, S., Kellen, E., Villiger, P.M., Rutgeerts, P., Vermeire, S., and Lottaz, D. 2011. Genetic evidence supporting the association of protease and protease inhibitor genes with inflammatory bowel disease: A systematic review. PLoS One 6:e24106.
  Consiglio, A., Grillo, G., Licciulli, F., Ceci, L.R., Liuni, S., Losito, N., Volpicella, M., Gallerani, R., and De Leo, F. 2011. PlantPIs—an interactive web resource on plant protease inhibitors. Curr. Protein Pept. Sci. 12:448‐454.
  Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792‐1797.
  Fasano, A. 2011. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91:151‐175.
  Finn, R.D., Clements, J., and Eddy, S.R. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39:W29‐W37.
  Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L., Tate, J., and Punta, M. 2014. Pfam: The protein families database. Nucleic Acids Res. 42:D222‐D230.
  Freer, S.T., Kraut, J., Robertus, J.D., Wright, H.T., and Xuong, N.H. 1970. Chymotrypsinogen: 2.5‐angstrom crystal structure, comparison with alpha‐chymotrypsin, and implications for zymogen activation. Biochemistry 9:1997‐2009.
  Fuchs, J.E., von Grafenstein, S., Huber, R.G., Margreiter, M.A., Spitzer, G.M., Wallnoefer, H.G., and Liedl, K.R. 2013. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput. Biol. 9:e1003007.
  Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al‐Lazikani, B., and Overington, J.P. 2012. ChEMBL: A large‐scale bioactivity database for drug discovery. Nucleic Acids Res. 40:D1100‐D1107.
  Greening, D.W., Kapp, E.A., Ji, H., Speed, T.P., and Simpson, R.J. 2013. Colon tumour secretopeptidome: Insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. Biochim. Biophys. Acta 1834:2396‐2407.
  Gutlapalli, R.V., Ambaru, J.L., Darla, P., and Rao, K.R. 2012. Genome wide search for identification of potential drug targets in Bacillus anthracis. Int. J. Comput. Biol. Drug. Des. 5:164‐179.
  Hanson, R.M. 2010. Jmol—a paradigm shift in crystallographic visualization. J. Appl. Crystallogr. 43:1250‐1260.
  Hartshorn, M.J. 2002. AstexViewer: A visualisation aid for structure‐based drug design. J. Comput. Aided Mol. Des. 16:871‐881.
  Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M., and Steinbeck, C. 2013. The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Res. 41:D456‐D463.
  Hodis, E., Prilusky, J., Martz, E., Silman, I., Moult, J., and Sussman, J.L. 2008. Proteopedia—a scientific ‘wiki’ bridging the rift between three‐dimensional structure and function of biomacromolecules. Genome Biol. 9:R121.
  Howe, K., Bateman, A., and Durbin, R. 2002. QuickTree: Building huge Neighbour‐Joining trees of protein sequences. Bioinformatics 18:1546‐1547.
  Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R.D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo‐Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A.F., Rivoire, C., Sangrador‐Vegas, A., Selengut, J.D., Sigrist, C.J., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P.D., Wu, C,H., Yeats, C., and Yong, S.Y. 2012. InterPro in 2011: New developments in the family and domain prediction database. Nucleic Acids Res. 40:D306‐D312.
  Igarashi, Y., Eroshkin, A., Gramatikova, S., Gramatikoff, K., Zhang, Y., Smith, J.W., Osterman, A.L., and Godzik, A. 2007. CutDB: A proteolytic event database. Nucleic Acids Res. 35:D546‐D549.
  Kabsch, W. and Sander, C. 1983. Dictionary of protein secondary structure: Pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22:2577‐2637.
  Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30:772‐780.
  Lange, P.F., Huesgen, P.F., and Overall, C.M. 2012. TopFIND 2.0—linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res. 40:D351‐D361.
  Laskar, A., Rodger, E.J., Chatterjee, A., and Mandal, C. 2011. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases. Bioinformation 7:239‐245.
  Li, Q., Cheng, T., Wang, Y., and Bryant, S.H. 2010. PubChem as a public resource for drug discovery. Drug Discov. Today 15:1052‐1057.
  Liu, T., Lin, Y., Wen, X., Jorissen, R.N., and Gilson, M.K. 2007. BindingDB: A web‐accessible database of experimentally determined protein‐ligand binding affinities. Nucleic Acids Res. 35:D198‐D201.
  Mulenga, A. and Erikson, K. 2011. A snapshot of the Ixodes scapularis degradome. Gene 482:78‐93.
  NCBI Resource Coordinators. 2014. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 42:D7‐D17.
  Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 85:2444‐2448.
  Prlić, A., Down, T.A., and Hubbard, T.J. 2005. Adding some SPICE to DAS. Bioinformatics 21:40‐41.
  Rawlings, N.D. and Barrett, A.J. 1993. Evolutionary families of peptidases. Biochem. J. 290:205‐218.
  Rawlings, N.D. and Morton, F.R. 2008. The MEROPS batch BLAST: A tool to detect peptidases and their non‐peptidase homologues in a genome. Biochimie 90:243‐259.
  Rawlings, N.D. and Salvesen, G.S. (eds.) 2013. Handbook of Proteolytic Enzymes, 3rd ed. Academic Press, New York.
  Rawlings, N.D., Barrett, A.J., and Bateman, A. 2011. Asparagine peptide lyases: A seventh catalytic type of proteolytic enzymes. J. Biol. Chem. 286:38321‐38328.
  Rawlings, N.D., Waller, M., Barrett, A.J., and Bateman, A. 2014. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42:D503‐D509.
  Richardson, J.S. 1985. Schematic drawings of protein structures. Methods Enzymol. 115:359‐380.
  Rose, P.W., Bi, C., Bluhm, W.F., Christie, C.H., Dimitropoulos, D., Dutta, S., Green, R.K., Goodsell, D.S., Prlić, A., Quesada, M., Quinn, G.B., Ramos, A.G., Westbrook, J.D., Young, J., Zardecki, C., Berman, H.M., and Bourne, P.E. 2013. The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Res. 41:D475‐D482.
  Sayle, R.A. and Milner‐White, E.J. 1995. RASMOL: Biomolecular graphics for all. Trends Biochem. Sci. 20:374.
  Shafferman, A., Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., and Barak, D. 1992. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem. 267:17640‐17648.
  Sillitoe, I., Cuff, A.L., Dessailly, B.H., Dawson, N.L., Furnham, N., Lee, D., Lees, J.G., Lewis, T.E., Studer, R.A., Rentzsch, R., Yeats, C., Thornton, J.M., and Orengo, C.A. 2013. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res. 41:D490‐D498.
  Song, J., Tan, H., Perry, A.J., Akutsu, T., Webb, G.I., Whisstock, J.C., and Pike, R.N. 2012. PROSPER: An integrated feature‐based tool for predicting protease substrate cleavage sites. PLoS One 7:e50300.
  Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., and Wu, C.H. 2007. UniRef: Comprehensive and non‐redundant UniProt reference clusters. Bioinformatics 23:1282‐1288.
  Venkatesh, B., Lee, A.P., Ravi, V., Maurya, A.K., Lian, M.M., Swann, J.B., Ohta, Y., Flajnik, M.F., Sutoh, Y., Kasahara, M., Hoon, S., Gangu, V., Roy, S.W., Irimia, M., Korzh, V., Kondrychyn, I., Lim, Z.W., Tay, B.H., Tohari, S., Kong, K.W., Ho, S., Lorente‐Galdos, B., Quilez, J., Marques‐Bonet, T., Raney, B.J., Ingham, P.W., Tay, A., Hillier, L.W., Minx, P., Boehm, T., Wilson, R.K., Brenner, S., and Warren, W.C. 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174‐179.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library