Using MACS to Identify Peaks from ChIP‐Seq Data

Jianxing Feng1, Tao Liu2, Yong Zhang1

1 School of Life Sciences and Technology, Tongji University, Shanghai, China, 2 Department of Biostatistics and Computational Biology, Dana‐Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 2.14
DOI:  10.1002/0471250953.bi0214s34
Online Posting Date:  June, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Model‐based Analysis of ChIP‐Seq (MACS) is a command‐line tool designed by X. Shirley Liu and colleagues to analyze data generated by ChIP‐Seq experiments in eukaryotes, especially mammals. MACS can be used to identify transcription factor binding sites and histone modification–enriched regions if the ChIP‐Seq data, with or without control samples, are given. This unit describes two basic protocols that provide detailed information on how to use MACS to identify either the binding sites of a transcription factor or the enriched regions of a histone modification with broad peaks. Furthermore, the basic ideas for the MACS algorithm and its appropriate usage are discussed. Curr. Protoc. Bioinform. 34:2.14.1‐2.14.14. © 2011 by John Wiley & Sons, Inc.

Keywords: MACS; ChIP‐Seq; peak‐calling; cistrome; epigenome

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Running MACS Program to Identify Transcription Factor Binding Sites
  • Basic Protocol 2: Running MACS Program to Profile Histone Modification Status
  • Support Protocol 1: Obtaining and Installing MACS Program
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z. and Struhl, K. 2005. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Mol. Biol. 69:21.3.1‐21.3.33.
   Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. 2007. High‐resolution profiling of histone methylations in the human genome. Cell 129:823‐837.
   Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E.A., Silver, P.A., Gingeras, T.R., Liu, X.S., and Brown, M. 2006. Genome‐wide analysis of estrogen receptor binding sites. Nat. Genet. 38:1289‐1297.
   Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. 2007. Genome‐wide mapping of in vivo protein‐DNA interactions. Science 316:1497‐1502.
   Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. 2002. The human genome browser at UCSC. Genome Res. 12:996‐1006.
   Lupien, M., Eeckhoute, J., Meyer, C.A., Wang, Q., Zhang, Y., Li, W., Carroll, J.S., Liu, X.S., and Brown, M. 2008. FoxA1 translates epigenetic signatures into enhancer driven lineage‐specific transcription. Cell 132:958‐970.
   Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S., and Bernstein, B.E. 2007. Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells. Nature 448:553‐560.
   Nicol, J.W., Helt, G.A., Blanchard, S.G. Jr., Raja, A., and Loraine, A.E. 2009. The Integrated Genome Browser: Free software for distribution and exploration of genome‐scale datasets. Bioinformatics 25:2730‐2731.
   Raha, D., Hong, M. and Snyder, M. 2010. ChIP‐Seq: A method for global identification of regulatory elements in the genome. Curr. Protoc. Mol. Biol. 91:21.19.1‐21.19.14.
   Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler‐Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., and Hurles, M.E. 2006. Global variation in copy number in the human genome. Nature 444:444‐454.
   Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. 2007. Genome‐wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4:651‐657.
   Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. 2008. Model‐based analysis of ChIP‐Seq (MACS). Genome Biol. 9:R137.
PDF or HTML at Wiley Online Library