Comparative Protein Structure Modeling Using MODELLER

Benjamin Webb1, Andrej Sali1

1 University of California at San Francisco, San Francisco, California
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 5.6
DOI:  10.1002/cpbi.3
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Comparative protein structure modeling predicts the three‐dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target‐template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.

Keywords: comparative modeling; ModBase; MODELLER; protein fold; protein structure; structure prediction

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Modeling Lactate Dehydrogenase from Trichomonas Vaginalis (TvLDH) Based on a Single Template using Modeller
  • Support Protocol 1: Obtaining and Installing Modeller
  • Commentary
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Abagyan, R. and Totrov, M. 1994. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235:983‐1002 doi: 10.1006/jmbi.1994.1052.
  Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI‐BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389‐3402. doi: 10.1093/nar/25.17.3389.
  Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C., and Murzin, A.G. 2004. SCOP database in 2004: Refinements integrate structure and sequence family data. Nucleic Acids Res. 32:D226‐D229. doi: 10.1093/nar/gkh039.
  Armougom, F., Moretti, S., Poirot, O., Audic, S., Dumas, P., Schaeli, B., Keduas, V., and Notredame, C. 2006. Expresso: Automatic incorporation of structural information in multiple sequence alignments using 3D‐Coffee. Nucleic Acids Res. 34:W604‐W608. doi: 10.1093/nar/gkl092.
  Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. 2006. The SWISS‐MODEL workspace: A web‐based environment for protein structure homology modelling. Bioinformatics 22:195‐201. doi: 10.1093/bioinformatics/bti770.
  Arnold, K., Kiefer, F., Kopp, J., Battey, J.N., Podvinec, M., Westbrook, J.D., Berman, H.M., Bordoli, L., and Schwede, T. 2009. The protein model portal. J. Struct. Funct. Genomics 10:1‐8. doi: 10.1007/s10969‐008‐9048‐5.
  Aszodi, A. and Taylor, W.R. 1994. Secondary structure formation in model polypeptide chains. Protein Eng. 7:633‐644. doi: 10.1093/protein/7.5.633.
  Attwood, T.K., Coletta, A., Muirhead, G., Pavlopoulou, A., Philippou, P.B., Popov, I., Roma‐Mateo, C., Theodosiou, A., and Mitchell, A.L. 2012. The PRINTS database: A fine‐grained protein sequence annotation and analysis resource–its status in 2012. Database (Oxford) 2012:bas019. doi: 10.1093/database/bas019.
  Bailey, T.L. and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28‐36
  Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O'Donovan, C., Redaschi, N., and Yeh, L.S. 2005. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33:D154‐D159. doi: 10.1093/nar/gki070.
  Baker, D. and Sali, A. 2001. Protein structure prediction and structural genomics. Science 294:93‐96. doi: 10.1126/science.1065659.
  Barton, G.J. and Sternberg, M.J. 1987. A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J. Mol. Biol. 198:327‐337. doi: 10.1016/0022‐2836(87)90316‐0.
  Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths‐Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., and Eddy, S.R. 2004. The Pfam protein families database. Nucleic Acids Res. 32:D138‐D141. doi: 10.1093/nar/gkh121.
  Bates, P.A., Kelley, L.A., MacCallum, R.M., and Sternberg, M.J. 2001. Enhancement of protein modeling by human intervention in applying the automatic programs 3D‐JIGSAW and 3D‐PSSM. Proteins Suppl 5:39‐46. doi: 10.1002/prot.1168.
  Benkert, P., Biasini, M., and Schwede, T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343‐350. doi: 10.1093/bioinformatics/btq662.
  Benson, D.A., Cavanaugh, M., Clark, K., Karsch‐Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. 2013. GenBank. Nucleic Acids Res. 41:D36‐D42. doi: 10.1093/nar/gks1195.
  Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235‐242. doi: 10.1093/nar/28.1.235.
  Blundell, T.L., Sibanda, B.L., Sternberg, M.J., and Thornton, J.M. 1987. Knowledge‐based prediction of protein structures and the design of novel molecules. Nature 326:347‐352. doi: 10.1038/326347a0.
  Boissel, J.P., Lee, W.R., Presnell, S.R., Cohen, F.E., and Bunn, H.F. 1993. Erythropoietin structure‐function relationships. Mutant proteins that test a model of tertiary structure. J. Biol. Chem. 268:15983‐15993.
  Bowie, J.U., Luthy, R., and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three‐dimensional structure. Science 253:164‐170. doi: 10.1126/science.1853201.
  Braun, W. and Go, N. 1985. Calculation of protein conformations by proton‐proton distance constraints. A new efficient algorithm. J. Mol. Biol. 186:611‐626. doi: 10.1016/0022‐2836(85)90134‐2.
  Brenner, S.E., Chothia, C., and Hubbard, T.J. 1998. Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. U.S.A. 95:6073‐6078. doi: 10.1073/pnas.95.11.6073.
  Brown, S.D. and Babbitt, P.C. 2012. Inference of functional properties from large‐scale analysis of enzyme superfamilies. J. Biol. Chem. 287:35‐42. doi: 10.1074/jbc.R111.283408.
  Browne, W.J., North, A.C., Phillips, D.C., Brew, K., Vanaman, T.C., and Hill, R.L. 1969. A possible three‐dimensional structure of bovine alpha‐lactalbumin based on that of hen's egg‐white lysozyme. J. Mol. Biol. 42:65‐86. doi: 10.1016/0022‐2836(69)90487‐2.
  Bru, C., Courcelle, E., Carrere, S., Beausse, Y., Dalmar, S., and Kahn, D. 2005. The ProDom database of protein domain families: More emphasis on 3D. Nucleic Acids Res. 33:D212‐D215. doi: 10.1093/nar/gki034.
  Bruccoleri, R.E. and Karplus, M. 1987. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26:137‐168. doi: 10.1002/bip.360260114.
  Bruccoleri, R.E. and Karplus, M. 1990. Conformational sampling using high‐temperature molecular dynamics. Biopolymers 29:1847‐1862. doi: 10.1002/bip.360291415.
  Bystroff, C. and Baker, D. 1998. Prediction of local structure in proteins using a library of sequence‐structure motifs. J. Mol. Biol. 281:565‐577. doi: 10.1006/jmbi.1998.1943.
  Chinea, G., Padron, G., Hooft, R.W., Sander, C., and Vriend, G. 1995. The use of position‐specific rotamers in model building by homology. Proteins 23:415‐421. doi: 10.1002/prot.340230315.
  Chothia, C. and Lesk, A.M. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196:901‐917. doi: 10.1016/0022‐2836(87)90412‐8.
  Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith‐Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M., and Poljak, R.J. 1989. Conformations of immunoglobulin hypervariable regions. Nature 342:877‐883. doi: 10.1038/342877a0.
  Claessens, M., Van Cutsem, E., Lasters, I., and Wodak, S. 1989. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 2:335‐345. doi: 10.1093/protein/2.5.335.
  Claude, J.B., Suhre, K., Notredame, C., Claverie, J.M., and Abergel, C. 2004. CaspR: A web server for automated molecular replacement using homology modelling. Nucleic Acids Res. 32:W606‐W609. doi: 10.1093/nar/gkh400.
  Clore, G.M., Brunger, A.T., Karplus, M., and Gronenborn, A.M. 1986. Application of molecular dynamics with interproton distance restraints to three‐dimensional protein structure determination. A model study of crambin. J. Mol. Biol. 191:523‐551. doi: 10.1016/0022‐2836(86)90146‐4.
  Cohen, F.E., Gregoret, L., Presnell, S.R., and Kuntz, I.D. 1989. Protein structure predictions: New theoretical approaches. Prog. Clin. Biol. Res. 289:75‐85.
  Collura, V., Higo, J., and Garnier, J. 1993. Modeling of protein loops by simulated annealing. Protein Sci. 2:1502‐1510. doi: 10.1002/pro.5560020915.
  Colovos, C. and Yeates, T.O. 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2:1511‐1519. doi: 10.1002/pro.5560020916.
  de Bakker, P.I., DePristo, M.A., Burke, D.F., and Blundell, T.L. 2003. Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all‐atom statistical potential and the AMBER force field with the Generalized Born solvation model. Proteins 51:21‐40. doi: 10.1002/prot.10235.
  Deane, C.M. and Blundell, T.L. 2001. CODA: A combined algorithm for predicting the structurally variable regions of protein models. Protein Sci. 10:599‐612. doi: 10.1110/ps.37601.
  DePristo, M.A., de Bakker, P.I., Lovell, S.C., and Blundell, T.L. 2003. Ab initio construction of polypeptide fragments: Efficient generation of accurate, representative ensembles. Proteins 51:41‐55. doi: 10.1002/prot.10285.
  Dietmann, S., Park, J., Notredame, C., Heger, A., Lappe, M., and Holm, L. 2001. A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3. Nucleic Acids Res. 29:55‐57. doi: 10.1093/nar/29.1.55.
  Dong, G.Q., Fan, H., Schneidman‐Duhovny, D., Webb, B., and Sali, A. 2013. Optimized atomic statistical potentials: Assessment of protein interfaces and loops. Bioinformatics 29:3158‐3166. doi: 10.1093/bioinformatics/btt560.
  Dror, O., Benyamini, H., Nussinov, R., and Wolfson, H. 2003. MASS: Multiple structural alignment by secondary structures. Bioinformatics 19 Suppl 1:i95‐i104. doi: 10.1093/bioinformatics/btg1012.
  Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics 14:755‐763. doi: 10.1093/bioinformatics/14.9.755.
  Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792‐1797. doi: 10.1093/nar/gkh340.
  Edgar, R.C. and Sjolander, K. 2004. A comparison of scoring functions for protein sequence profile alignment. Bioinformatics 20:1301‐1308. doi: 10.1093/bioinformatics/bth090.
  Enyedy, I.J., Lee, S.L., Kuo, A.H., Dickson, R.B., Lin, C.Y., and Wang, S. 2001. Structure‐based approach for the discovery of bis‐benzamidines as novel inhibitors of matriptase. J. Med. Chem. 44:1349‐1355. doi: 10.1021/jm000395x.
  Eramian, D., Eswar, N., Shen, M., and Sali, A. 2008. How well can the accuracy of comparative protein structure models be predicted? Protein Sci. 17:1881‐1893. doi: 10.1110/ps.036061.108.
  Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V.A., Pieper, U., Stuart, A.C., Marti‐Renom, M.A., Madhusudhan, M.S., Yerkovich, B., and Sali, A. 2003. Tools for comparative protein structure modeling and analysis. Nucleic Acids Res. 31:3375‐3380. doi: 10.1093/nar/gkg543.
  Felsenstein, J. 1989. PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164‐166. doi: 10.1111/j.1096‐0031.1989.tb00562.x.
  Felts, A.K., Gallicchio, E., Wallqvist, A., and Levy, R.M. 2002. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all‐atom force field and the Surface Generalized Born solvent model. Proteins 48:404‐422. doi: 10.1002/prot.10171.
  Fernandez‐Fuentes, N. and Fiser, A. 2006. Saturating representation of loop conformational fragments in structure databanks. BMC Struct. Biol. 6:15. doi: 10.1186/1472‐6807‐6‐15.
  Fernandez‐Fuentes, N., Rai, B.K., Madrid‐Aliste, C.J., Fajardo, J.E., and Fiser, A. 2007. Comparative protein structure modeling by combining multiple templates and optimizing sequence‐to‐structure alignments. Bioinformatics 23:2558‐2565. doi: 10.1093/bioinformatics/btm377.
  Fidelis, K., Stern, P.S., Bacon, D., and Moult, J. 1994. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng. 7:953‐960. doi: 10.1093/protein/7.8.953.
  Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L., and Levinthal, C. 1986. Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins 1:342‐362. doi: 10.1002/prot.340010408.
  Fiser, A. 2004. Protein structure modeling in the proteomics era. Expert Rev. Proteomics 1:97‐110. doi: 10.1586/14789450.1.1.97.
  Fiser, A. and Sali, A. 2003a. Modeller: Generation and refinement of homology‐based protein structure models. Methods Enzymol. 374:461‐491. doi: 10.1016/S0076‐6879(03)74020‐8.
  Fiser, A. and Sali, A. 2003b. ModLoop: Automated modeling of loops in protein structures. Bioinformatics 19:2500‐2501. doi: 10.1093/bioinformatics/btg362.
  Fiser, A., Do, R.K.G., and Sali, A. 2000. Modeling of loops in protein structures. Protein Sci. 9:1753‐1773. doi: 10.1110/ps.9.9.1753.
  Fiser, A., Feig, M., Brooks, C.L., and Sali, A. 2002. Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 35:413‐421. doi: 10.1021/ar010061h.
  Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho‐Silva, D., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., Gil, L., Garcia‐Giron, C., Gordon, L., Hourlier, T., Hunt, S., Juettemann, T., Kahari, A.K., Keenan, S., Komorowska, M., Kulesha, E., Longden, I., Maurel, T., McLaren, W.M., Muffato, M., Nag, R., Overduin, B., Pignatelli, M., Pritchard, B., Pritchard, E., Riat, H.S., Ritchie, G.R., Ruffier, M., Schuster, M., Sheppard, D., Sobral, D., Taylor, K., Thormann, A., Trevanion, S., White, S., Wilder, S.P., Aken, B.L., Birney, E., Cunningham, F., Dunham, I., Harrow, J., Herrero, J., Hubbard, T.J., Johnson, N., Kinsella, R., Parker, A., Spudich, G., Yates, A., Zadissa, A., and Searle, S.M. 2013. Ensembl 2013. Nucleic Acids Res. 41:D48‐D55. doi: 10.1093/nar/gks1236.
  Gao, H.X., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S.M., Van Roey, P., Agrawal, R.K., Harvey, S.C., Sali, A., Chapman, M.S., and Frank, J. 2003. Study of the structural dynamics of the E‐coli 70S ribosome using real‐space refinement. Cell 113:789‐801. doi: 10.1016/S0092‐8674(03)00427‐6.
  Godzik, A. 2003. Fold recognition methods. Methods Biochem. Anal. 44:525‐546.
  Gough, J., Karplus, K., Hughey, R., and Chothia, C. 2001. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313:903‐919. doi: 10.1006/jmbi.2001.5080.
  Greer, J. 1981. Comparative model‐building of the mammalian serine proteases. J. Mol. Biol. 153:1027‐1042. doi: 10.1016/0022‐2836(81)90465‐4.
  Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987. Profile analysis: Detection of distantly related proteins. Proc. Natl. Acad. Sci. U.S.A. 84:4355‐4358. doi: 10.1073/pnas.84.13.4355.
  Guerler, A. and Knapp, E.W. 2008. Novel protein folds and their nonsequential structural analogs. Protein Sci. 17:1374‐1382. doi: 10.1110/ps.035469.108.
  Haas, J., Roth, S., Arnold, K., Kiefer, F., Schmidt, T., Bordoli, L., and Schwede, T. 2013. The Protein Model Portal–a comprehensive resource for protein structure and model information. Database (Oxford) 2013:bat031. doi: 10.1093/database/bat031.
  Havel, T.F. and Snow, M.E. 1991. A new method for building protein conformations from sequence alignments with homologues of known structure. J. Mol. Biol. 217:1‐7. doi: 10.1016/0022‐2836(91)90603‐4.
  Henikoff, S. and Henikoff, J.G. 1994. Position‐based sequence weights. J. Mol. Biol. 243:574‐578. doi: 10.1016/0022‐2836(94)90032‐9.
  Higo, J., Collura, V., and Garnier, J. 1992. Development of an extended simulated annealing method: Application to the modeling of complementary determining regions of immunoglobulins. Biopolymers 32:33‐43. doi: 10.1002/bip.360320106.
  Holm, L. and Sander, C. 1991. Database algorithm for generating protein backbone and side‐chain co‐ordinates from a C alpha trace application to model building and detection of co‐ordinate errors. J. Mol. Biol. 218:183‐194. doi: 10.1016/0022‐2836(91)90883‐8.
  Holm, L., Kääriäinen, S., Wilton, C. and Plewczynski, D. 2006. Using Dali for structural comparison of proteins. Curr. Protoc. Bioinform. 14::5.5.1‐5.5.24.
  Hooft, R.W., Vriend, G., Sander, C., and Abola, E.E. 1996. Errors in protein structures. Nature 381:272. doi: 10.1038/381272a0.
  Howell, P.L., Almo, S.C., Parsons, M.R., Hajdu, J., and Petsko, G.A. 1992. Structure determination of turkey egg‐white lysozyme using Laue diffraction data. Acta Crystallogr., B 48:200‐207. doi: 10.1107/S0108768191012466.
  Huang, H., Hu, Z.Z., Arighi, C.N., and Wu, C.H. 2007. Integration of bioinformatics resources for functional analysis of gene expression and proteomic data. Front. Biosci. 12:5071‐5088. doi: 10.2741/2449.
  Huang, C.C., Novak, W.R., Babbitt, P.C., Jewett, A.I., Ferrin, T.E., and Klein, T.E. 2000. Integrated tools for structural and sequence alignment and analysis. Pac. Symp. Biocomput. 230‐241.
  Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk‐Genevaux, P.S., Pagni, M., and Sigrist, C.J. 2006. The PROSITE database. Nucleic Acids Res. 34:D227‐D230. doi: 10.1093/nar/gkj063.
  Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R.D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo‐Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A.F., Rivoire, C., Sangrador‐Vegas, A., Selengut, J.D., Sigrist, C.J., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P.D., Wu, C.H., Yeats, C., and Yong, S.Y. 2012. InterPro in 2011: New developments in the family and domain prediction database. Nucleic Acids Res. 40:D306‐D312. doi: 10.1093/nar/gkr948.
  Hura, G.L., Menon, A.L., Hammel, M., Rambo, R.P., Poole, F.L., 2nd, Tsutakawa, S.E., Jenney, F.E., Jr., Classen, S., Frankel, K.A., Hopkins, R.C., Yang, S.J., Scott, J.W., Dillard, B.D., Adams, M.W., and Tainer, J.A. 2009. Robust, high‐throughput solution structural analyses by small angle X‐ray scattering (SAXS). Nat. Methods 6:606‐612. doi: 10.1038/nmeth.1353.
  Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J., Honig, B., Shaw, D.E., and Friesner, R.A. 2004. A hierarchical approach to all‐atom protein loop prediction. Proteins 55:351‐367. doi: 10.1002/prot.10613.
  Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., and Godzik, A. 2005. FFAS03: A server for profile–profile sequence alignments. Nucleic Acids Res. 33:W284‐W288. doi: 10.1093/nar/gki418.
  John, B. and Sali, A. 2003. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 31:3982‐3992. doi: 10.1093/nar/gkg460.
  Jones, D.T. 1999. GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287:797‐815. doi: 10.1006/jmbi.1999.2583.
  Jones, D.T. 2001. Evaluating the potential of using fold‐recognition models for molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57:1428‐1434. doi: 10.1107/S0907444901013403.
  Jones, T.A. and Thirup, S. 1986. Using known substructures in protein model building and crystallography. EMBO J. 5:819‐822.
  Kabsch, W. and Sander, C. 1984. On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations. Proc. Natl. Acad. Sci. U.S.A. 81:1075‐1078. doi: 10.1073/pnas.81.4.1075.
  Kallberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., and Xu, J. 2012. Template‐based protein structure modeling using the RaptorX web server. Nat. Protoc. 7:1511‐1522. doi: 10.1038/nprot.2012.085.
  Kaplan, W. and Littlejohn, T.G. 2001. Swiss‐PDB Viewer (Deep View). Brief. Bioinformatics 2:195‐197. doi: 10.1093/bib/2.2.195.
  Karchin, R., Cline, M., Mandel‐Gutfreund, Y., and Karplus, K. 2003. Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. Proteins 51:504‐514. doi: 10.1002/prot.10369.
  Karchin, R., Diekhans, M., Kelly, L., Thomas, D.J., Pieper, U., Eswar, N., Haussler, D., and Sali, A. 2005. LS‐SNP: Large‐scale annotation of coding non‐synonymous SNPs based on multiple information sources. Bioinformatics 21:2814‐2820. doi: 10.1093/bioinformatics/bti442.
  Karplus, K. 2009. SAM‐T08, HMM‐based protein structure prediction. Nucleic Acids Res. 37:W492‐W497. doi: 10.1093/nar/gkp403.
  Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846‐856. doi: 10.1093/bioinformatics/14.10.846.
  Karplus, K., Karchin, R., Draper, J., Casper, J., Mandel‐Gutfreund, Y., Diekhans, M., and Hughey, R. 2003. Combining local‐structure, fold‐recognition, and new fold methods for protein structure prediction. Proteins 53 Suppl 6:491‐496. doi: 10.1002/prot.10540.
  Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30:772‐780. doi: 10.1093/molbev/mst010.
  Kelley, L.A. and Sternberg, M.J. 2009. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 4:363‐371. doi: 10.1038/nprot.2009.2.
  Kelley, L.A., MacCallum, R.M., and Sternberg, M.J. 2000. Enhanced genome annotation using structural profiles in the program 3D‐PSSM. J. Mol. Biol. 299:499‐520. doi: 10.1006/jmbi.2000.3741.
  Khafizov, K., Staritzbichler, R., Stamm, M., and Forrest, L.R. 2010. A study of the evolution of inverted‐topology repeats from LeuT‐fold transporters using AlignMe. Biochemistry 49:10702‐10713. doi: 10.1021/bi101256x.
  Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., and Schwede, T. 2009. The SWISS‐MODEL Repository and associated resources. Nucleic Acids Res. 37:D387‐D392. doi: 10.1093/nar/gkn750.
  Koehl, P. and Delarue, M. 1995. A self consistent mean field approach to simultaneous gap closure and side‐chain positioning in homology modelling. Nat. Struct. Biol. 2:163‐170. doi: 10.1038/nsb0295‐163.
  Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J., and Lesk, A.M. 2006. MUSTANG: A multiple structural alignment algorithm. Proteins 64:559‐574. doi: 10.1002/prot.20921.
  Krivov, G.G., Shapovalov, M.V., and Dunbrack, R.L., Jr. 2009. Improved prediction of protein side‐chain conformations with SCWRL4. Proteins 77:778‐795. doi: 10.1002/prot.22488.
  Krogh, A., Brown, M., Mian, I.S., Sjolander, K., and Haussler, D. 1994. Hidden Markov models in computational biology. Applications to protein modeling. J. Mol. Biol. 235:1501‐1531. doi: 10.1006/jmbi.1994.1104.
  Laskowski, R., MacArthur, M., Moss, D., and Thornton, J. 1993. PROCHECK‐a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26:283‐291. doi: 10.1107/S0021889892009944.
  Lessel, U. and Schomburg, D. 1994. Similarities between protein 3‐D structures. Protein Eng. 7:1175‐1187. doi: 10.1093/protein/7.10.1175.
  Letunic, I., Doerks, T., and Bork, P. 2012. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 40:D302‐D305. doi: 10.1093/nar/gkr931.
  Levitt, M. 1992. Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol. 226:507‐533. doi: 10.1016/0022‐2836(92)90964‐L.
  Li, R., Chen, X., Gong, B., Selzer, P.M., Li, Z., Davidson, E., Kurzban, G., Miller, R.E., Nuzum, E.O., McKerrow, J.H., Fletterick, R.J., Gillmor, S.A., Craik, C.S., Kuntz, I.D., Cohen, F.E., and Kenyon, G.L. 1996. Structure‐based design of parasitic protease inhibitors. Bioorg. Med. Chem. 4:1421‐1427. doi: 10.1016/0968‐0896(96)00136‐8.
  Lin, J., Qian, J., Greenbaum, D., Bertone, P., Das, R., Echols, N., Senes, A., Stenger, B., and Gerstein, M. 2002. GeneCensus: Genome comparisons in terms of metabolic pathway activity and protein family sharing. Nucleic Acids Res. 30:4574‐4582. doi: 10.1093/nar/gkf555.
  Lindahl, E. and Elofsson, A. 2000. Identification of related proteins on family, superfamily and fold level. J. Mol. Biol. 295:613‐625. doi: 10.1006/jmbi.1999.3377.
  Lupyan, D., Leo‐Macias, A., and Ortiz, A.R. 2005. A new progressive‐iterative algorithm for multiple structure alignment. Bioinformatics 21:3255‐3263. doi: 10.1093/bioinformatics/bti527.
  Luthy, R., Bowie, J.U., and Eisenberg, D. 1992. Assessment of protein models with three‐dimensional profiles. Nature 356:83‐85. doi: 10.1038/356083a0.
  MacKerell, A.D., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph‐McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz‐Kuczera, J., Yin, D., and Karplus, M. 1998. All‐atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586‐3616. doi: 10.1021/jp973084f.
  Madhusudhan, M.S., Marti‐Renom, M.A., Sanchez, R., and Sali, A. 2006. Variable gap penalty for protein sequence‐structure alignment. Protein Eng. Des. Sel. 19:129‐133. doi: 10.1093/protein/gzj005.
  Madhusudhan, M.S., Webb, B.M., Marti‐Renom, M.A., Eswar, N., and Sali, A. 2009. Alignment of multiple protein structures based on sequence and structure features. Protein Eng. Des. Sel. 22:569‐574. doi: 10.1093/protein/gzp040.
  Mandell, D.J., Coutsias, E.A., and Kortemme, T. 2009. Sub‐angstrom accuracy in protein loop reconstruction by robotics‐inspired conformational sampling. Nat. Methods 6:551‐552. doi: 10.1038/nmeth0809‐551.
  Marti‐Renom, M.A., Ilyin, V.A., and Sali, A. 2001. DBAli: A database of protein structure alignments. Bioinformatics 17:746‐747. doi: 10.1093/bioinformatics/17.8.746.
  Marti‐Renom, M.A., Madhusudhan, M.S., and Sali, A. 2004. Alignment of protein sequences by their profiles. Protein Sci. 13:1071‐1087. doi: 10.1110/ps.03379804.
  Marti‐Renom, M.A., Madhusudhan, M.S., Fiser, A., Rost, B., and Sali, A. 2002. Reliability of assessment of protein structure prediction methods. Structure 10:435‐440. doi: 10.1016/S0969‐2126(02)00731‐1.
  Marti‐Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. 2000. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29:291‐325. doi: 10.1146/annurev.biophys.29.1.291.
  Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M., and Stevens, R.L. 1995. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J. Biol. Chem. 270:19524‐19531 doi: 10.1074/jbc.270.33.19524.
  McGuffin, L.J. and Jones, D.T. 2003. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19:874‐881. doi: 10.1093/bioinformatics/btg097.
  McGuffin, L.J., Bryson, K., and Jones, D.T. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16:404‐405. doi: 10.1093/bioinformatics/16.4.404.
  Melo, F. and Feytmans, E. 1998. Assessing protein structures with a non‐local atomic interaction energy. J. Mol. Biol. 277:1141‐1152. doi: 10.1006/jmbi.1998.1665.
  Melo, F. and Sali, A. 2007. Fold assessment for comparative protein structure modeling. Protein Sci. 16:2412‐2426. doi: 10.1110/ps.072895107.
  Melo, F., Sanchez, R., and Sali, A. 2002. Statistical potentials for fold assessment. Protein Sci. 11:430‐448. doi: 10.1002/pro.110430.
  Mezei, M. 1998. Chameleon sequences in the PDB. Protein Eng. 11:411‐414. doi: 10.1093/protein/11.6.411.
  Mirkovic, N., Marti‐Renom, M.A., Weber, B.L., Sali, A., and Monteiro, A.N. 2004. Structure‐based assessment of missense mutations in human BRCA1: Implications for breast and ovarian cancer predisposition. Cancer Res. 64:3790‐3797. doi: 10.1158/0008‐5472.CAN‐03‐3009.
  Misura, K.M. and Baker, D. 2005. Progress and challenges in high‐resolution refinement of protein structure models. Proteins 59:15‐29. doi: 10.1002/prot.20376.
  Misura, K.M., Chivian, D., Rohl, C.A., Kim, D.E., and Baker, D. 2006. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. U.S.A. 103:5361‐5366. doi: 10.1073/pnas.0509355103.
  Miwa, J.M., Ibanez‐Tallon, I., Crabtree, G.W., Sanchez, R., Sali, A., Role, L.W., and Heintz, N. 1999. lynx1, an endogenous toxin‐like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23:105‐114. doi: 10.1016/S0896‐6273(00)80757‐6.
  Modi, S., Paine, M.J., Sutcliffe, M.J., Lian, L.Y., Primrose, W.U., Wolf, C.R., and Roberts, G.C. 1996. A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry 35:4540‐4550. doi: 10.1021/bi952742o.
  Moult, J. 2005. A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285‐289. doi: 10.1016/
  Moult, J. and James, M.N. 1986. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1:146‐163. doi: 10.1002/prot.340010207.
  Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. 2003. Critical assessment of methods of protein structure prediction (CASP)‐round V. Proteins 53 Suppl 6:334‐339. doi: 10.1002/prot.10556.
  Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., and Tramontano, A. 2009. Critical assessment of methods of protein structure prediction—Round VIII. Proteins 77 Suppl 9:1‐4. doi: 10.1002/prot.22589.
  Nagarajaram, H.A., Reddy, B.V., and Blundell, T.L. 1999. Analysis and prediction of inter‐strand packing distances between beta‐sheets of globular proteins. Protein Eng. 12:1055‐1062. doi: 10.1093/protein/12.12.1055.
  Needleman, S.B. and Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443‐453. doi: 10.1016/0022‐2836(70)90057‐4.
  Notredame, C. 2010. Computing multiple sequence/structure alignments with the T‐coffee package. Curr. Protoc. Bioinformatics 29:3.8:3.8.1‐3.8.25. doi: 10.1002/0471250953.bi0308s04.
  Notredame, C., Higgins, D.G., and Heringa, J. 2000. T‐Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302:205‐217. doi: 10.1006/jmbi.2000.4042.
  Ohlson, T., Wallner, B., and Elofsson, A. 2004. Profile‐profile methods provide improved fold‐recognition: A study of different profile‐profile alignment methods. Proteins 57:188‐197. doi: 10.1002/prot.20184.
  Oliva, B., Bates, P.A., Querol, E., Aviles, F.X., and Sternberg, M.J. 1997. An automated classification of the structure of protein loops. J. Mol. Biol. 266:814‐830. doi: 10.1006/jmbi.1996.0819.
  Ortiz, A.R., Strauss, C.E.M., and Olmea, O. 2002. MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison. Protein Sci. 11:2606‐2621. doi: 10.1110/ps.0215902.
  Panchenko, A.R. 2003. Finding weak similarities between proteins by sequence profile comparison. Nucleic Acids Res. 31:683‐689. doi: 10.1093/nar/gkg154.
  Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T., and Chothia, C. 1998. Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J. Mol. Biol. 284:1201‐1210. doi: 10.1006/jmbi.1998.2221.
  Pawlowski, K., Bierzynski, A., and Godzik, A. 1996. Structural diversity in a family of homologous proteins. J. Mol. Biol. 258:349‐366. doi: 10.1006/jmbi.1996.0255.
  Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R., Grant, A., Lee, D., Akpor, A., Maibaum, M., Harrison, A., Dallman, T., Reeves, G., Diboun, I., Addou, S., Lise, S., Johnston, C., Sillero, A., Thornton, J., and Orengo, C. 2005. The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res. 33:D247‐D251. doi: 10.1093/nar/gki024.
  Pearson, W.R. 1994. Using the FASTA program to search protein and DNA sequence databases. Methods Mol. Biol. 24:307‐331.
  Pearson, W.R. 2000. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132:185‐219.
  Pegg, S.C., Brown, S.D., Ojha, S., Seffernick, J., Meng, E.C., Morris, J.H., Chang, P.J., Huang, C.C., Ferrin, T.E., and Babbitt, P.C. 2006. Leveraging enzyme structure‐function relationships for functional inference and experimental design: The structure‐function linkage database. Biochemistry 45:2545‐2555. doi: 10.1021/bi052101l.
  Pei, J., Kim, B.H., and Grishin, N.V. 2008. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36:2295‐2300. doi: 10.1093/nar/gkn072.
  Petrey, D. and Honig, B. 2005. Protein structure prediction: Inroads to biology. Mol. Cell 20:811‐819. doi: 10.1016/j.molcel.2005.12.005.
  Pieper, U., Webb, B., Dong, G.Q., Schneidman‐Duhovny, D., Fan, H., Kim, S.J., Khuri, N., Spill, Y., Weinkam, P., Hammel, M., Tainer, J., Nilges, M., and Sali, A. 2014. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 42:336‐346. doi: 10.1093/nar/gkt1144.
  Pieper, U., Webb, B.M., Barkan, D.T., Schneidman‐Duhovny, D., Schlessinger, A., Braberg, H., Yang, Z., Meng, E.C., Pettersen, E.F., Huang, C.C., Datta, R.S., Sampathkumar, P., Madhusudhan, M.S., Sjolander, K., Ferrin, T.E., Burley, S.K., and Sali, A. 2011. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39:465‐474. doi: 10.1093/nar/gkq1091.
  Pietrokovski, S. 1996. Searching databases of conserved sequence regions by aligning protein multiple‐alignments. Nucleic Acids Res. 24:3836‐3845. doi: 10.1093/nar/24.19.3836.
  Prlic, A., Bliven, S., Rose, P.W., Bluhm, W.F., Bizon, C., Godzik, A., and Bourne, P.E. 2010. Pre‐calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26:2983‐2985. doi: 10.1093/bioinformatics/btq572.
  Que, X., Brinen, L.S., Perkins, P., Herdman, S., Hirata, K., Torian, B.E., Rubin, H., McKerrow, J.H., and Reed, S.L. 2002. Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. Mol. Biochem. Parasitol. 119:23‐32. doi: 10.1016/S0166‐6851(01)00387‐5.
  Ray, A., Lindahl, E., and Wallner, B. 2012. Improved model quality assessment using ProQ2. BMC Bioinformatics 13:224. doi: 10.1186/1471‐2105‐13‐224.
  Remmert, M., Biegert, A., Hauser, A., and Soding, J. 2012. HHblits: Lightning‐fast iterative protein sequence searching by HMM‐HMM alignment. Nat. Methods 9:173‐175. doi: 10.1038/nmeth.1818.
  Ring, C.S., Kneller, D.G., Langridge, R., and Cohen, F.E. 1992. Taxonomy and conformational analysis of loops in proteins. J. Mol. Biol. 224:685‐699. doi: 10.1016/0022‐2836(92)90553‐V.
  Ring, C.S., Sun, E., McKerrow, J.H., Lee, G.K., Rosenthal, P.J., Kuntz, I.D., and Cohen, F.E. 1993. Structure‐based inhibitor design by using protein models for the development of antiparasitic agents. Proc. Natl. Acad. Sci. U. S. A. 90:3583‐3587. doi: 10.1073/pnas.90.8.3583.
  Roche, D.B., Buenavista, M.T., Tetchner, S.J., and McGuffin, L.J. 2011. The IntFOLD server: An integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res. 39:W171‐176. doi: 10.1093/nar/gkr184.
  Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:85‐94. doi: 10.1093/protein/12.2.85.
  Roy, A., Kucukural, A., and Zhang, Y. 2010. I‐TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 5:725‐738. doi: 10.1038/nprot.2010.5.
  Rufino, S.D., Donate, L.E., Canard, L.H., and Blundell, T.L. 1997. Predicting the conformational class of short and medium size loops connecting regular secondary structures: Application to comparative modelling. J. Mol. Biol. 267:352‐367. doi: 10.1006/jmbi.1996.0851.
  Rychlewski, L., Zhang, B., and Godzik, A. 1998. Fold and function predictions for Mycoplasma genitalium proteins. Fold Des. 3:229‐238. doi: 10.1016/S1359‐0278(98)00034‐0.
  Sadreyev, R. and Grishin, N. 2003. COMPASS: A tool for comparison of multiple protein alignments with assessment of statistical significance. J. Mol. Biol. 326:317‐336. doi: 10.1016/S0022‐2836(02)01371‐2.
  Sali, A. and Blundell, T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779‐815. doi: 10.1006/jmbi.1993.1626.
  Sali, A. and Overington, J.P. 1994. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci. 3:1582‐1596. doi: 10.1002/pro.5560030923.
  Samudrala, R. and Moult, J. 1998. A graph‐theoretic algorithm for comparative modeling of protein structure. J. Mol. Biol. 279:287‐302. doi: 10.1006/jmbi.1998.1689.
  Sanchez, R. and Sali, A. 1997a. Advances in comparative protein‐structure modelling. Curr. Opin. Struct. Biol. 7:206‐214. doi: 10.1016/S0959‐440X(97)80027‐9.
  Sanchez, R. and Sali, A. 1997b. Evaluation of comparative protein structure modeling by MODELLER‐3. Proteins Suppl 1:50‐58.
  Sanchez, R. and Sali, A. 1998. Large‐scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. U.S.A. 95:13597‐13602. doi: 10.1073/pnas.95.23.13597.
  Saqi, M.A., Russell, R.B., and Sternberg, M.J. 1998. Misleading local sequence alignments: Implications for comparative protein modelling. Protein Eng. 11:627‐630. doi: 10.1093/protein/11.8.627.
  Sauder, J.M., Arthur, J.W., and Dunbrack, R.L., Jr. 2000. Large‐scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40:6‐22. doi: 10.1002/(SICI)1097‐0134(20000701)40:1%3c6::AID‐PROT30%3e3.0.CO;2‐7.
  Schneidman‐Duhovny, D., Hammel, M., and Sali, A. 2010. FoXS: A web server for rapid computation and fitting of SAXS Profiles. Nucleic Acids Res. 38:541‐544. doi: 10.1093/nar/gkq461.
  Schwarzenbacher, R., Godzik, A., Grzechnik, S.K., and Jaroszewski, L. 2004. The importance of alignment accuracy for molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 60:1229‐1236. doi: 10.1107/S0907444904010145.
  Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. 2003. SWISS‐MODEL: An automated protein homology‐modeling server. Nucleic Acids Res. 31:3381‐3385. doi: 10.1093/nar/gkg520.
  Sellers, B.D., Zhu, K., Zhao, S., Friesner, R.A., and Jacobson, M.P. 2008. Toward better refinement of comparative models: Predicting loops in inexact environments. Proteins 72:959‐971. doi: 10.1002/prot.21990.
  Selzer, P.M., Chen, X., Chan, V.J., Cheng, M., Kenyon, G.L., Kuntz, I.D., Sakanari, J.A., Cohen, F.E., and McKerrow, J.H. 1997. Leishmania major: Molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp. Parasitol. 87:212‐221. doi: 10.1006/expr.1997.4220.
  Shatsky, M., Nussinov, R., and Wolfson, H.J. 2004. A method for simultaneous alignment of multiple protein structures. Proteins 56:143‐156. doi: 10.1002/prot.10628.
  Shatsky, M., Nussinov, R., and Wolfson, H.J. 2006. Optimization of multiple‐sequence alignment based on multiple‐structure alignment. Proteins 62:209‐217. doi: 10.1002/prot.20665.
  Shen, M.Y. and Sali, A. 2006. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15:2507‐2524. doi: 10.1110/ps.062416606.
  Sheng, Y., Sali, A., Herzog, H., Lahnstein, J., and Krilis, S.A. 1996. Site‐directed mutagenesis of recombinant human beta 2‐glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti‐cardiolipin antibody activity. J. Immunol. 157:3744‐3751.
  Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H.J., and Levinthal, C. 1987. Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures. Biopolymers 26:2053‐2085. doi: 10.1002/bip.360261207.
  Shi, J., Blundell, T.L., and Mizuguchi, K. 2001. FUGUE: Sequence‐structure homology recognition using environment‐specific substitution tables and structure‐dependent gap penalties. J. Mol. Biol. 310:243‐257. doi: 10.1006/jmbi.2001.4762.
  Sibanda, B.L., Blundell, T.L., and Thornton, J.M. 1989. Conformation of beta‐hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J. Mol. Biol. 206:759‐777. doi: 10.1016/0022‐2836(89)90583‐4.
  Sippl, M.J. 1990. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge‐based prediction of local structures in globular proteins. J. Mol. Biol. 213:859‐883. doi: 10.1016/S0022‐2836(05)80269‐4.
  Sippl, M.J. 1993. Recognition of errors in three‐dimensional structures of proteins. Proteins 17:355‐362. doi: 10.1002/prot.340170404.
  Sippl, M.J. 1995. Knowledge‐based potentials for proteins. Curr. Opin. Struct. Biol. 5:229‐235. doi: 10.1016/0959‐440X(95)80081‐6.
  Skolnick, J. and Kihara, D. 2001. Defrosting the frozen approximation: PROSPECTOR–a new approach to threading. Proteins 42:319‐331. doi: 10.1002/1097‐0134(20010215)42:3%3c319::AID‐PROT30%3e3.0.CO;2‐A.
  Smith, T.F. and Waterman, M.S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147:195‐197. doi: 10.1016/0022‐2836(81)90087‐5.
  Soding, J. 2005. Protein homology detection by HMM‐HMM comparison. Bioinformatics 21:951‐960. doi: 10.1093/bioinformatics/bti125.
  Soding, J., Biegert, A., and Lupas, A.N. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33:W244‐W248. doi: 10.1093/nar/gki408.
  Song, Y., Dimaio, F., Wang, R.Y., Kim, D., Miles, C., Brunette, T., Thompson, J., and Baker, D. 2013. High‐Resolution Comparative Modeling with RosettaCM. Structure 21:1735‐1742. doi: 10.1016/j.str.2013.08.005.
  Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G., and Frank, J. 2001. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA‐ribosome and subunit‐subunit interactions. Cell 107:373‐386. doi: 10.1016/S0092‐8674(01)00539‐6.
  Srinivasan, N. and Blundell, T.L. 1993. An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 6:501‐512. doi: 10.1093/protein/6.5.501.
  Sutcliffe, M.J., Dobson, C.M., and Oswald, R.E. 1992. Solution structure of neuronal bungarotoxin determined by two‐dimensional NMR spectroscopy: Calculation of tertiary structure using systematic homologous model building, dynamical simulated annealing, and restrained molecular dynamics. Biochemistry 31:2962‐2970. doi: 10.1021/bi00126a017.
  Sutcliffe, M.J., Haneef, I., Carney, D., and Blundell, T.L. 1987. Knowledge based modelling of homologous proteins, Part I: Three‐dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1:377‐384. doi: 10.1093/protein/1.5.377.
  Taylor, W.R., Flores, T.P., and Orengo, C.A. 1994. Multiple protein structure alignment. Protein Sci. 3:1858‐1870. doi: 10.1002/pro.5560031025.
  Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673‐4680. doi: 10.1093/nar/22.22.4673.
  Topham, C.M., Srinivasan, N., Thorpe, C.J., Overington, J.P., and Kalsheker, N.A. 1994. Comparative modelling of major house dust mite allergen Der p I: Structure validation using an extended environmental amino acid propensity table. Protein Eng. 7:869‐894. doi: 10.1093/protein/7.7.869.
  Topham, C.M., McLeod, A., Eisenmenger, F., Overington, J.P., Johnson, M.S., and Blundell, T.L. 1993. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J. Mol. Biol. 229:194‐220. doi: 10.1006/jmbi.1993.1018.
  Unger, R., Harel, D., Wherland, S., and Sussman, J.L. 1989. A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins 5:355‐373. doi: 10.1002/prot.340050410.
  Vakser, I.A. 1995. Protein docking for low‐resolution structures. Protein Eng. 8:371‐377. doi: 10.1093/protein/8.4.371.
  van Gelder, C.W., Leusen, F.J., Leunissen, J.A., and Noordik, J.H. 1994. A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins 18:174‐185. doi: 10.1002/prot.340180209.
  van Vlijmen, H.W. and Karplus, M. 1997. PDB‐based protein loop prediction: Parameters for selection and methods for optimization. J. Mol. Biol. 267:975‐1001. doi: 10.1006/jmbi.1996.0857.
  Vernal, J., Fiser, A., Sali, A., Muller, M., Cazzulo, J.J., and Nowicki, C. 2002. Probing the specificity of a trypanosomal aromatic alpha‐hydroxy acid dehydrogenase by site‐directed mutagenesis. Biochem. Biophys. Res. Commun. 293:633‐639. doi: 10.1016/S0006‐291X(02)00270‐X.
  von Ohsen, N., Sommer, I., and Zimmer, R. 2003. Profile‐profile alignment: A powerful tool for protein structure prediction. Pac. Symp. Biocomput. 252‐263.
  Wang, G. and Dunbrack, R.L., Jr. 2004. Scoring profile‐to‐profile sequence alignments. Protein Sci. 13:1612‐1626. doi: 10.1110/ps.03601504.
  Wang, Q., Canutescu, A.A., and Dunbrack, R.L., Jr. 2008. SCWRL and MolIDE: Computer programs for side‐chain conformation prediction and homology modeling. Nat. Protoc. 3:1832‐1847. doi: 10.1038/nprot.2008.184.
  Weinkam, P., Pons, J., and Sali, A. 2012. Structure‐based model of allostery predicts coupling between distant sites. Proc. Natl. Acad. Sci. U.S.A. 109:4875‐4880. doi: 10.1073/pnas.1116274109.
  Wiederstein, M. and Sippl, M.J. 2007. ProSA‐web: Interactive web service for the recognition of errors in three‐dimensional structures of proteins. Nucleic Acids Res. 35:W407‐W410. doi: 10.1093/nar/gkm290.
  Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., and Burley, S.K. 1998. Crystal structure of a GCN5‐related N‐acetyltransferase: Serratia marcescens aminoglycoside 3‐N‐acetyltransferase. Cell 94:439‐449. doi: 10.1016/S0092‐8674(00)81585‐8.
  Wu, S. and Zhang, Y. 2008. MUSTER: Improving protein sequence profile‐profile alignments by using multiple sources of structure information. Proteins 72:547‐556. doi: 10.1002/prot.21945.
  Wu, G., Fiser, A., ter Kuile, B., Sali, A., and Muller, M. 1999. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. U. S. A. 96:6285‐6290. doi: 10.1073/pnas.96.11.6285.
  Xiang, Z., Soto, C.S., and Honig, B. 2002. Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction. Proc. Natl. Acad. Sci. U.S.A. 99:7432‐7437. doi: 10.1073/pnas.102179699.
  Xu, L.Z., Sanchez, R., Sali, A., and Heintz, N. 1996. Ligand specificity of brain lipid‐binding protein. J. Biol. Chem. 271:24711‐24719. doi: 10.1074/jbc.271.40.24711.
  Xu, J., Li, M., Kim, D., and Xu, Y. 2003. RAPTOR: Optimal protein threading by linear programming. J. Bioinform. Comput. Biol. 1:95‐117. doi: 10.1142/S0219720003000186.
  Yona, G. and Levitt, M. 2002. Within the twilight zone: A sensitive profile‐profile comparison tool based on information theory. J. Mol. Biol. 315:1257‐1275. doi: 10.1006/jmbi.2001.5293.
  Zhang, Y. and Skolnick, J. 2005. TM‐align: A protein structure alignment algorithm based on the TM‐score. Nucleic Acids Res. 33:2302‐2309. doi: 10.1093/nar/gki524.
  Zheng, Q., Rosenfeld, R., Vajda, S., and DeLisi, C. 1993. Determining protein loop conformation using scaling‐relaxation techniques. Protein Sci. 2:1242‐1248. doi: 10.1002/pro.5560020806.
  Zhou, H. and Zhou, Y. 2002. Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11:2714‐2726. doi: 10.1110/ps.0217002.
  Zhou, H. and Zhou, Y. 2005. Fold recognition by combining sequence profiles derived from evolution and from depth‐dependent structural alignment of fragments. Proteins 58:321‐328. doi: 10.1002/prot.20308.
  Zhu, K., Pincus, D.L., Zhao, S., and Friesner, R.A. 2006. Long loop prediction using the protein local optimization program. Proteins 65:438‐452. doi: 10.1002/prot.21040.
Internet Resources
  Webb, B., Madhusudhan, M.S., Shen, M‐Y., Dong, G.Q., Marti‐Renom, M.A., Eswar, N., Alber, F., Topf, M., Oliva, B., Fiser, A., Sanchez, R., Yerkovich, B., Badretdinov, A., Melo, F., Overington, J.P., Feyfant, E., and Sali, A. 2015. MODELLER, A Protein Structure Modeling Program, Release 9.15.
  Pieper, U., Webb, B., Dong, G.Q., Schneidman‐Duhovny, D., Fan, H., Kim, S.J., Khuri, N., Spill, Y.G., Weinkam, P., Hammel, M., Tainer, J.A., Nilges, M., and Sali, A. 2015. MODBASE, a database of annotated comparative protein structure models.
  Eramian, D., Shen, M.‐Y., Melo, F., Pieper, U., Webb, B., Eswar, N., Sanchez, R., and Sali, A. 2015. ModEval, a web server for evaluating protein structure models.
  Fiser, A., Do, R., Webb, B., Pieper, U., and Sali, A. 2003. ModLoop, a web server for modeling of loops in protein structures.
  Weinkam, P., Pons, J., Webb, B., Pieper, U., Tjioe, E., and Sali, A. 2012. AllosMod, a web server to set up and run simulations based on modeled energy landscapes.
  Schneidman‐Duhovny, D., Hammel, M., Tainer, J., and Sali, A. 2013. FoXS, a web server for fast SAXS profile computation with Debye formula.
PDF or HTML at Wiley Online Library