Analyzing Gene Expression Data from Microarray and Next‐Generation DNA Sequencing Transcriptome Profiling Assays Using GeneSifter Analysis Edition

Sandra Porter1, N. Eric Olson1, Todd Smith1

1 Geospiza, Inc., Seattle, Washington
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 7.14
DOI:  10.1002/0471250953.bi0714s27
Online Posting Date:  September, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Transcription profiling with microarrays has become a standard procedure for comparing the levels of gene expression between pairs of samples, or multiple samples following different experimental treatments. New technologies, collectively known as next‐generation DNA sequencing methods, are also starting to be used for transcriptome analysis. These technologies, with their low background, large capacity for data collection, and dynamic range, provide a powerful and complementary tool to the assays that formerly relied on microarrays. In this chapter, we describe two protocols for working with microarray data from pairs of samples and samples treated with multiple conditions, and discuss alternative protocols for carrying out similar analyses with next‐generation DNA sequencing data from two different instrument platforms (Illumina GA and Applied Biosystems SOLiD). Curr. Protoc. Bioinform. 27:7.14.1‐7.14.35. © 2009 by John Wiley & Sons, Inc.

Keywords: gene expression; microarray; RNA‐Seq; transcriptome; GeneSifter Analysis Edition; next‐generation DNA sequencing

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Comparing Gene Expression from Paired Sample Data Obtained from Microarray Experiments
  • Alternate Protocol 1: Compare Gene Expression from Paired Samples Obtained from Transcriptome Profiling Assays by Next‐Generation DNA Sequencing
  • Basic Protocol 2: Comparing Gene Expression from Microarray Experiments with Multiple Conditions
  • Alternate Protocol 2: Compare Gene Expression from Next‐Generation DNA Sequencing Data Obtained from Multiple Conditions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., and Edgar, R. 2009. NCBI GEO: Archive for high‐throughput functional genomic data. Nucleic Acids Res. 37:D885‐D890.
   Kaufman, L. and Rousseeuw, P. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York.
   Kozul, C.D., Nomikos, A.P., Hampton, T.H., Warnke, L.A., Gosse, J.A., Davey, J.C., Thorpe, J.E., Jackson, B.P., Ihnat, M.A., and Hamilton, J.W. 2008. Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chem. Biol. Interact. 173:129‐140.
   Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics E‐pub May 18.
   Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. 2008. RNA‐seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18:1509‐1517.
   Millenaar, F.F., Okyere, J., May, S.T., van Zanten, M., Voesenek, L.A., and Peeters, A.J. 2006. How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics 7:137.
   Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA‐Seq. Nat. Methods 5:621‐628.
   Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K., and Surani, M.A. 2009. mRNA‐Seq whole‐transcriptome analysis of a single cell. Nat. Methods 5:377‐382.
   Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA‐Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57‐63.
   Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Miller, V., Ostell, J., Pruitt, K.D., Schuler, G.D., Shumway, M., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R.L., Tatusova, T.A., Wagner, L., and Yaschenko, E. 2008. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 36:D13‐D21.
Internet Resources
  The microarray data center at Geospiza, Inc. A diverse set of microarray data sets and tutorials on using GSAE are available from this page.
  The NCBI GEO (Gene Expression Omnibus) database. GEO is a convenient place to find both microarray and Next Gen transcriptome datasets.
  The ArrayExpress database from the European Bioinformatics Institute. Both microarray and Next Gen transcriptome data can be obtained here.
  The NCBI SRA (Short Read Archive) database. Some Next Gen transcriptome data can be obtained here.
PDF or HTML at Wiley Online Library