Identifying Functional Sites Based on Prediction of Charged Group Behavior

Mary Jo Ondrechen1

1 Northeastern University, Boston, Massachusetts
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 8.6
DOI:  10.1002/0471250953.bi0806s6
Online Posting Date:  September, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This protocol describes the implementation and interpretation of THEMATICS, a simple computational predictor of functional information for proteins from the three‐dimensional structure. This method is based on the computation of the electrical potential function for the protein and the calculation of the predicted titration curves for each of the titratable groups in the protein. While most of the titratable residues in a protein have predicted titration behavior that fits the Henderson‐Hasselbalch equation, the ionizable residues in the active site generally deviate dramatically from the typical behavior. From the calculated titration curves, one identifies those residues that deviate significantly from Henderson‐Hasselbalch behavior. A cluster of two or more of such deviant titratable residues in physical proximity is a reliable predictor of active‐site location.

Keywords: THEMATICS; protein function prediction; active sites; titration; functional genomics

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Thematics Analysis Using the UHBD Package
  • Guidelines for Understanding Results
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alexov, E.G. and Gunner, M.R. 1997. Incorporating protein conformational flexibility into the calculation of pH‐dependent protein properties. Biophys. J. 72:2075‐2093.
   Antosiewicz, J., Briggs, J.M., Elcock, A.H., Gilson, M.K., and McCammon, J.A. 1996a. Computing the ionization states of proteins with a detailed charge model. J. Comp. Chem. 17:1633‐1644.
   Antosiewicz, J., McCammon, J.A., and Gilson, M.K. 1996b. The determinants of pKa's in proteins. Biochemistry 35:7819‐7833.
   Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. 2001. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98:10037‐10041.
   Bartlett, G.J., Porter, C.T., Borkakoti, N., and Thornton, J.M. 2002. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 324:105‐121.
   Bashford, D. and Gerwert, K. 1992. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J. Mol. Biol. 224:473‐486.
   Bashford, D. and Karplus, M. 1991. Multiple‐site titration curves of proteins: An analysis of exact and approximate methods for their calculation. J. Phys. Chem. 95:9556‐9561.
   Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The protein data bank. Nucleic Acids Res. 28:235‐242.
   Beroza, P. and Case, D.A. 1996. Including side chain flexibility in continuum electrostatic calculations of protein titration. J. Phys. Chem. 100:20156‐20163.
   Beroza, P., Fredkin, D.R., Okamura, M.Y., and Feher, G. 1995. Electrostatic calculations of amino acid titration and electron transfer, Q‐AQB‐‐>QAQ‐B, in the reaction center. Biophys. J. 68:2233‐2250.
   Carlson, H.A., Briggs, J.M., and McCammon, J.A. 1999. Calculation of the pKa values for the ligands and side chains of Escherichia coli D‐alanine:D‐alanine ligase. J. Med. Chem. 42:109‐117.
   Gilson, M.K. 1993. Multiple‐site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins 15:266‐282.
   Glaser, F., Pupko, T., Paz, I., Bell, R.E., Bechor‐Shental, D., Martz, E., and Ben‐Tal, N. 2003. ConSurf: Identification of functional regions in proteins by surface‐mapping of phylogenetic information. Bioinformatics 19:163‐164.
   Holyoak, T., Wilson, M.A., Fenn, T.D., Kettner, C.A., Petsko, G.A., Fuller, R.S., and Ringe, D. 2003. 2.4 Å resolution crystal structure of the prototypical hormone‐processing protease kex2 in complex with an ala‐lys‐arg boronic acid inhibitor. Biochemistry 42:6709‐6718.
   Karshikoff, A. 1995. A simple algorithm for the calculation of multiple site titration curves. Protein Eng. 8:243‐248.
   Lichtarge, O. and Sowa, M.E. 2002. Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12:21‐27.
   Lichtarge, O., Bourne, H.R., and Cohen, F.E. 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257:342‐358.
   Lodi, P.J. and Knowles, J.R. 1991. Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: Structural origins and catalytic implications. Biochemistry 30:6948‐6956.
   Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., and McCammon, J.A. 1995. Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91:57‐95.
   Mehler, E.L. and Guarnieri, F. 1999. A self‐consistent, microenvironment modulated screened Coulomb potential approximation to calculate pH‐dependent electrostatic effects in proteins. Biophys. J. 77:3‐22.
   Nielsen, J.E., Andersen, K.V., Honig, B., Hooft, R.W.W., Klebe, G., Vriend, G., and Wade, R.C. 1999. Improving macromolecular electrostatics calculations. Protein Eng. 12:657‐662.
   Ondrechen, M.J. 2002. THEMATICS as a tool for functional genomics. Genome Inform. 13:563‐564.
   Ondrechen, M.J., Clifton, J.G., and Ringe, D. 2001. THEMATICS: A simple computational predictor of enzyme function from structure. Proc. Natl. Acad. Sci. U.S.A. 98:12473‐12478.
   Pupko, T., Bell, R.E., Mayrose, I., Glaser, F., and Ben‐Tal, N. 2002. Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18:S71‐S77.
   Ringe, D., Wei, Y., Boino, K.R., and Ondrechen, M.J. 2004. Protein structure to function: Insights from computation. Cell. Mol. Life Sci. 61:387‐392.
   Sampogna, R.V. and Honig, B. 1994. Environmental effects on the protonation states of active site residues in bacteriorhodopsin. Biophys. J. 66:1341‐1352.
   Shehadi, I.A., Yang, H., and Ondrechen, M.J. 2002. Future directions in protein function prediction. Mol. Biol. Rep. 29:329‐335.
   Shehadi, I.A., Uzun, A., Murga, L.F., Ilyin, V., and Ondrechen, M.J. 2004. THEMATICS is effective for active site prediction in comparative model structures. In Proceeding of the Second Asia‐Pacific Bioinformatics Conference (APBC2004), Dunedin, New Zealand, vol. 29 (Y.P.P. Chen ed.), pp. 209‐215.
   Sjolander, K. 1998. Phylogenetic inference in protein superfamilies: Analysis of SH2 domains. In Proceedings of the Conference Intelligent Systems for Molecular Biology 1998, vol. 6, pp. 165‐74.
   Stamper, G.F., Morollo, A.A., Ringe, D., and Stamper, C.G. 1998. Reaction of alanine racemase with 1‐aminoethylphosphonic acid forms a stable external aldimine. Biochemistry 37:10438‐10445.
   Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 8:52‐56.
   Warwicker, J. and Watson, H.C. 1982. Calculation of the electric potential in the active site cleft due to alpha‐helix dipoles. J. Mol. Biol. 157:671‐679.
   Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. 1999. Tyrosine 265 of alanine racemase serves as a base abstracting α‐hydrogen from L‐alanine: The counterpart residue to lysine 39 specific to D‐alanine. J. Biochem. 126:781‐786.
   Word, J.M., Lovell, S.C., Richardson, J.S., and Richardson, D.C. 1999. Asparagine and glutamine: Using hydrogen atom contacts in the choice of sidechain amide orientation. J. Mol. Biol. 285:1733‐1745.
   Xiao, B., Shi, G., Chen, X., Yan, H., and Ji, X. 1999. Crystal structure of 6‐hydroxymethyl‐7,8‐dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents. Structure Fold. Des. 7:489‐496.
   Yang, A.S., Gunner, M.R., Sampogna, R., Sharp, K., and Honig, B. 1993. On the calculation of pKas in proteins. Proteins 15:252‐265.
   Yao, H., Kristensen, D.M., Mihalek, I., Sowa, M.E., Shaw, C., Kimmel, M., Kavraki, L., and Lichtarge, O. 2003. An accurate, sensitive, and scalable method to identify functional sites in proteins. J. Mol. Biol. 326:255‐261.
   You, T. and Bashford, D. 1995. Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility. Biophys. J. 69:1721‐1733.
   Zhang, Z., Sugio, S., Komives, E.A., Liu, K.D., Knowles, J.R., Petsko, G.A., and Ringe, D. 1994. Crystal structure of recombinant chicken triosephosphate isomerase‐phosphoglycolohydroxamate complex at 1.8‐Å resolution. Biochemistry 33:2830‐2837.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library