Analyzing Protein‐Protein Interactions from Affinity Purification‐Mass Spectrometry Data with SAINT

Hyungwon Choi1, Guomin Liu2, Dattatreya Mellacheruvu3, Mike Tyers4, Anne‐Claude Gingras5, Alexey I. Nesvizhskii6

1 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 2 Center for Systems Biology, Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada, 3 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 4 Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada and Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 5 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, 6 Department of Pathology, University of Michigan, Ann Arbor, Michigan
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 8.15
DOI:  10.1002/0471250953.bi0815s39
Online Posting Date:  September, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Significance Analysis of INTeractome (SAINT) is a software package for scoring protein‐protein interactions based on label‐free quantitative proteomics data (e.g., spectral count or intensity) in affinity purification–mass spectrometry (AP‐MS) experiments. SAINT allows bench scientists to select bona fide interactions and remove nonspecific interactions in an unbiased manner. However, there is no ‘one‐size‐fits‐all’ statistical model for every dataset, since the experimental design varies across studies. Key variables include the number of baits, the number of biological replicates per bait, and control purifications. Here we give a detailed account of input data format, control data, selection of high‐confidence interactions, and visualization of filtered data. We explain additional options for customizing the statistical model for optimal filtering in specific datasets. We also discuss a graphical user interface of SAINT in connection to the LIMS system ProHits, which can be installed as a virtual machine on Mac OS X or Windows computers. Curr. Protoc. Bioinform. 39:8.15.1‐8.15.23. © 2012 by John Wiley & Sons, Inc.

Keywords: protein‐protein interactions; label‐free quantitative proteomics; affinity purification–mass spectrometry (AP‐MS); statistical model

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Installation and Data Formatting
  • Basic Protocol 2: Running SAINT
  • Support Protocol 1: Visualization of Network
  • Alternate Protocol 1: Running SAINT Through ProHits Interface: Virtual Machine GUI
  • Guidelines for Understanding Results
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Installation and Data Formatting

  Necessary Resources
  • Installed SAINT software and reformatted input data
  • R package (http://cran.r‐project.org/)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aranda, B., Blankenburg, H., Kerrien, S., Brinkman, F.S., Ceol, A., Chautard, E., Dana, J.M., De Las Rivas, J., Dumousseau, M., Galeota, E., Gaulton, A., Goll, J., Hancock, R.E., Isserlin, R., Jimenez, R.C., Kerssemakers, J., Khadake, J., Lynn, D.J., Michaut, M., O'Kelly, G., Ono, K., Orchard, S., Prieto, C., Razick, S., Rigina, O., Salwinski, L., Simonovic, M., Velankar, S., Winter, A., Wu, G., Bader, G.D., Cesareni, G., Donaldson, I.M., Eisenberg, D., Kleywegt, G.J., Overington, J., Ricard‐Blum, S., Tyers, M., Albrecht, M., Hermjakob, H. 2011. PSICQUIC and PSISCORE: Accessing and scoring molecular interactions. Nat. Methods 8:528‐529.
   Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. 2010. Network organization of the human autophagy system. Nature 466:68‐76.
   Breitkreutz, A., Breitkreutz, A., Choi, H., Sharom, J.R., Boucher, L., Neduva, V., Larsen, B., Lin, Z.Y., Breitkreutz, B.J., Stark, C., Liu, G., Ahn, J., Dewar‐Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z.S., Pawson, T., Gingras, A.C., Nesvizhskii, A.I., Tyers, M. 2010. A global protein kinase and phosphatase interaction network in yeast. Science 328:1043‐1046.
   Choi, H., Larsen, B., Lin, Z.Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., Qin, Z.S., Tyers, M., Gingras, A.C., and Nesvizhskii, A.I. 2011. SAINT: Probabilistic scoring of affinity purification‐mass spectrometry data. Nat. Methods 8:70‐73.
   Choi, H., Glatter, T., Gstaiger, M., and Nesvizhskii, A.I. 2012. SAINT‐MS1: Protein‐protein interaction scoring using label‐free intensity data in affinity purification‐mass spectrometry experiments. J Proteome Res. 11:2619‐2624.
   Cox, J. and Mann, M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat. Biotechnol. 26:1367‐1372.
   Craig, R. and Beavis, R.C. 2004. TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 20:1466‐1467.
   Deutsch, E.W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., Eng, J.K., Martin, D.B., Nesvizhskii, A.I., and Aebersold, R. 2010. A guided tour of the Trans‐Proteomic Pipeline. Proteomics 10:1150‐1159.
   Fermin, D., Basrur, V., Yocum, A.K., and Nesvizhskii, A.I. 2011. Abacus: A computational tool for extracting and pre‐processing spectral count data for label‐free quantitative proteomic analysis. Proteomics 11:1340‐1345.
   Gingras, A.C., Gstaiger, M., Raught, B., and Aebersold, R. 2007. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8:645‐654.
   Glatter, T., Wepf, A., Aebersold, R., and Gstaiger, M. 2009. An integrated workflow for charting the human interaction proteome: Insights into the PP2A system. Mol. Syst. Biol. 5:237.
   Goudreault, M., D'Ambrosio, L.M., Kean, M.J., Mullin, M.J., Larsen, B.G., Sanchez, A., Chaudhry, S., Chen, G.I., Sicheri, F., Nesvizhskii, A.I., Aebersold, R., Raught, B., and Gingras, A.C. 2009. A PP2A phosphatase high density interaction network identifies a novel striatin‐interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteomics 8:157‐171.
   Liu, G., Zhang, J., Larsen, B., Stark, C., Breitkreutz, A., Lin, Z.Y., Breitkreutz, B.J., Ding, Y., Colwill, K., Pasculescu, A., Pawson, T., Wrana, J.L., Nesvizhskii, A.I., Raught, B., Tyers, M., and Gingras, A.C. 2010. ProHits: Integrated software for mass spectrometry‐based interaction proteomics. Nat. Biotechnol. 28:1015‐1017.
   Lopes, C.T., Franz, M., Kazi, F., Donaldson, S.L., Morris, Q., and Bader, G.D. 2010. Cytoscape Web: An interactive web‐based network browser. Bioinformatics 26:2347‐2348.
   Nesvizhskii, A.I. 2010. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteom. 73:2092‐2123.
   Nesvizhskii, A.I. 2012. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics 12:1639‐1655.
   Orchard, S., Salwinski, L., Kerrien, S., Montecchi‐Palazzi, L., Oesterheld, M., Stümpflen, V., Ceol, A., Chatr‐aryamontri, A., Armstrong, J., Woollard, P., Salama, J.J., Moore, S., Wojcik, J., Bader, G.D., Vidal, M., Cusick, M.E., Gerstein, M., Gavin, A.C., Superti‐Furga, G., Greenblatt, J., Bader, J., Uetz, P., Tyers, M., Legrain, P., Fields, S., Mulder, N., Gilson, M., Niepmann, M., Burgoon, L., De Las Rivas, J., Prieto, C., Perreau, V.M., Hogue, C., Mewes, H.W., Apweiler, R., Xenarios, I., Eisenberg, D., Cesareni, G., and Hermjakob H. 2007. The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat. Biotechnol. 25:894‐898.
   Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. 1999. Probability‐based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551‐3567.
   Sardiu, M.E., Cai, Y., Jin, J., Swanson, S.K., Conaway, R.C., Conaway, J.W., Florens, L., and Washburn, M.P. 2008. Probabilistic assembly of human protein interaction networks from label‐free quantitative proteomics. Proc. Natl. Acad. Sci. U.S.A. 105:1454‐1459.
   Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498‐2504.
   Silva, J.C., Gorenstein, M.V., Li, G. Z., Vissers, J.P., and Geromanos, S.J. 2006. Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition. Mol. Cell. Proteom. 5:144‐156.
   Skarra, D.V., Goudreault, M., Choi, H., Mullin, M., Nesvizhskii, A. I., Gingras, A.C., and Honkanen, R.E. 2011. Label‐free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 11:1508‐1516.
   Sowa, M.E., Bennett, E.J., Gygi, S.P., and Harper, J.W. 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389‐403.
   Stark, C., Breitkreutz, B.J., Chatr‐Aryamontri, A., Boucher, L., Oughtred, R., Livstone, M.S., Nixon, J., Van Auken, K., Wang, X., Shi, X., Reguly, T., Rust, J.M., Winter, A., Dolinski, K., and Tyers, M. 2011. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39:D698‐D704.
   Taylor, C.F., Paton, N.W., Lilley, K.S., Binz, P.A., Julian, R.K.Jr., Jones, A.R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E.W., Dunn, M.J., Heck, A.J., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T.A., Patterson, S.D., Ping, P., Seymour, S.L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T.M., Whitelegge, J.P., Wilkins, M.R., Xenarios, I., Yates, J.R. 3rd, and Hermjakob, H. 2007. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25:887‐893.
   Tsou, C.C., Tsai, C.F., Tsui, Y.H., Sudhir, P.R., Wang, Y.T., Chen, Y.J., Chen, J.Y., Sung, T.Y., and Hsu, W.L. 2010. IDEAL‐Q, an automated tool for label‐free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell. Proteom. 9:131‐144.
   Turner, B., Razick, S., Turinsky, A.L., Vlasblom, J., Crowdy, E.K., Cho, E., Morrison, K., Donaldson, I.M., and Wodak, S.J. 2010. iRefWeb: Interactive analysis of consolidated protein interaction data and their supporting evidence. Database (Oxford) 2010:baq023.
   Yates, J.R. 3rd, Eng, J.K., McCormack, A.L., and Schieltz, D., 1995. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67:1426‐1436.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library