An Overview of RNA Sequence Analyses: Structure Prediction, ncRNA Gene Identification, and RNAi Design

Gary D. Stormo1

1 Washington University School of Medicine, Saint Louis, Missouri
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 12.1
DOI:  10.1002/0471250953.bi1201s43
Online Posting Date:  October, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit briefly describes the two fundamentally different methods for predicting RNA structures. The first is to find that structure with the minimum free energy of folding, as predicted by various thermodynamic parameters related to base‐pair stacking, loop lengths, and other features. If one has only a single sequence, this thermodynamic approach is the best available method. The second fundamental approach to RNA structure prediction is to use multiple, homologous sequences for which one can infer a common structure, and then try and predict a structure common to all of the sequences. Such an approach is referred to as a comparative method or phylogenetic method of RNA structure prediction. Curr. Protoc. Bioinform. 43:12.1.1‐12.1.3. © 2013 by John Wiley & Sons, Inc.

Keywords: RNA sequence and structure; minimum free energy structure prediction; non‐coding RNA genes; RNA interference; comparative structure prediction

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Literature Cited
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Coronnello, C., Hartmaier, R., Arora, A., Huleihel, L., Pandit, K.V., Bais, A.S., Butterworth, M., Kaminski, N., Stormo, G.D., Oesterreich, S., and Benos, P.V. 2012. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density. PLoS Comput. Biol. 8:e1002830.
  Doudna, J.A. and Cech, T.R. 2002. The chemical repertoire of natural ribozymes. Nature 418:222‐228.
  Eddy, S.R. 2002. Computational genomics of noncoding RNA genes. Cell 109:137‐140.
  Ellington, A.D., Chen, X., Robertson, M., and Syrett, A. 2009. Evolutionary origins and directed evolution of RNA. Int. J. Biochem. Cell Biol. 41:254‐265.
  Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. 2003. MicroRNA targets in Drosophila. Genome Biol. 5:R1.
  Gottesman, S. 2002. Stealth regulation: Biological circuits with small RNA switches. Genes Dev. 16:2829‐2842.
  Gottesman, S. 2005. Micros for microbes: Non‐coding regulatory RNAs in bacteria. Trends Genet. 21:399‐404.
  Gutell, R.R., Lee, J.C., and Connone, J.J. 2002. The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol. 12:301‐310.
  Hofacker, I.L. 2003. Vienna RNA secondary structure server. Nucleic Acids Res. 31:3429‐3431.
  Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., and Rajewsky, N. 2005. Combinatorial microRNA target predictions. Nat. Genet. 37:495‐500.
  Lewis, B.P., Burge, C.B., and Bartel, D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15‐20.
  Mathews, D.H. and Turner, D.H. 2002. Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317:191‐203.
  Sankoff, D. 1985. Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45:810‐825.
  Serganov, A. and Patel, D.J. 2007. Ribozymes, riboswitches and beyond: Regulation of gene expression without proteins. Nat. Rev. Genet. 8:776‐790.
  Stoltenburg, R., Reinemann, C., and Strehlitz, B. 2007. SELEX–A (r)evolutionary method to generate high‐affinity nucleic acid ligands. Biomol. Eng. 24:381‐403.
  Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T. 2009. miRecords: An integrated resource for microRNA‐target interactions. Nucleic Acids Res. 37:D105‐D110.
  Zamore, P.D. and Haley, B. 2005. Ribognome: The big world of small RNAs. Science 309:1519‐1524.
  Zuker, M. and Stiegler, P. 1981. Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133‐148.
PDF or HTML at Wiley Online Library