Using REDItools to Detect RNA Editing Events in NGS Datasets

Ernesto Picardi1, Anna Maria D'Erchia2, Antonio Montalvo3, Graziano Pesole1

1 National Institute of Biostructures and Biosystems (INBB), Rome, 2 Institute of Biomembranes and Bioenergetics, National Research Council, Bari, 3 University Hospital “Marqués de Valdecilla,” Santander
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 12.12
DOI:  10.1002/0471250953.bi1212s49
Online Posting Date:  March, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


RNA editing is a post‐transcriptional/co‐transcriptional molecular phenomenon whereby a genetic message is modified from the corresponding DNA template by means of substitutions, insertions, and/or deletions. It occurs in a variety of organisms and different cellular locations through evolutionally and biochemically unrelated proteins. RNA editing has a plethora of biological effects including the modulation of alternative splicing and fine‐tuning of gene expression. RNA editing events by base substitutions can be detected on a genomic scale by NGS technologies through the REDItools package, an ad hoc suite of Python scripts to study RNA editing using RNA‐Seq and DNA‐Seq data or RNA‐Seq data alone. REDItools implement effective filters to minimize biases due to sequencing errors, mapping errors, and SNPs. The package is freely available at Google Code repository ( and released under the MIT license. In the present unit we show three basic protocols corresponding to three main REDItools scripts. © 2015 by John Wiley & Sons, Inc.

Keywords: RNA editing; RNA‐Seq; DNA‐Seq; transcriptomics; NGS; next‐generation sequencing; REDItools

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: RNA Editing Detection Using RNA‐Seq and DNA‐Seq by
  • Support Protocol 1: Obtaining and Installing REDItools
  • Support Protocol 2: Preparing Input Files
  • Basic Protocol 2: Exploring RNA Editing in RNA‐Seq Data by
  • Basic Protocol 3: De Novo RNA Editing Detection Using RNA‐Seq Data Alone by
  • Guidelines for Understanding Results
  • Commentary
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Engstrom, P.G., Steijger, T., Sipos, B., Grant, G.R., Kahles, A., Alioto, T., Behr, J., Bertone, P., Bohnert, R., Campagna, D., Davis, C.A., Dobin, A., Gingeras, T.R., Goldman, N., Guigo, R., Harrow, J., Hubbard, T.J., Jean, G., Kosarev, P., Li, S., Liu, J., Mason, C.E., Molodtsov, V., Ning, Z., Ponstingl, H., Prins, J.F., Ratsch, G., Ribeca, P., Seledtsov, I., Solovyev, V., Valle, G., Vitulo, N., Wang, K., Wu, T.D., and Zeller, G. 2013. Systematic evaluation of spliced alignment programs for RNA‐seq data. Nat. Meth. 10:1185‐1191.
  Gallo, A. and Locatelli, F. 2012. ADARs: Allies or enemies? The importance of A‐to‐I RNA editing in human disease: From cancer to HIV‐1. Biol. Rev. Camb. Philos. Soc. 87:95‐110.
  Gott, J.M. and Emeson, R.B. 2000. Functions and mechanisms of RNA editing. Annu. Rev. Genet. 34:499‐531.
  Howad, W. and Kempken, F. 1997. Cell type‐specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc. Natl. Acad. Sci. U.S.A. 94:11090‐11095.
  Kiran, A.M., O'Mahony, J.J., Sanjeev, K., and Baranov, P.V. 2013. Darned in 2013: Inclusion of model organisms and linking with Wikipedia. Nucleic. Acids Res. 41:D258‐D261.
  Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078‐2079.
  Nishikura, K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79:321‐349.
  Picardi, E. and Pesole, G. 2013. REDItools: High‐throughput RNA editing detection made easy. Bioinformatics 29:1813‐1814.
  Picardi, E., Regina, T.M., Brennicke, A., and Quagliariello, C. 2007. REDIdb: The RNA editing database. Nucleic Acids Res. 35:D173‐D177.
  Picardi, E., Regina, T.M., Verbitskiy, D., Brennicke, A., and Quagliariello, C. 2011. REDIdb: An upgraded bioinformatics resource for organellar RNA editing sites. Mitochondrion 11:360‐365.
  Picardi, E., Horner, D.S., Chiara, M., Schiavon, R., Valle, G., and Pesole, G. 2010. Large‐scale detection and analysis of RNA editing in grape mtDNA by RNA deep‐sequencing. Nucleic Acids Res. 38:4755‐4767.
  Pullirsch, D. and Jantsch, M.F. 2010. Proteome diversification by adenosine to inosine RNA editing. RNA Biol. 7:205‐212.
  Ramaswami, G. and Li, J.B. 2014. RADAR: A rigorously annotated database of A‐to‐I RNA editing. Nucleic Acids Res. 42:D109‐113.
  Ramaswami, G., Lin, W., Piskol, R., Tan, M.H., Davis, C., and Li, J.B. 2012. Accurate identification of human Alu and non‐Alu RNA editing sites. Nature Meth. 9:579‐581.
  Wu, T.D. and Nacu, S. 2010. Fast and SNP‐tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873‐881.
Internet Resources
  Web site for downloading REDItools.
  REDItools online documentation.
  Web site for downloading GSNAP program.
  The official Python Web page.‐developers/pysam
  Web site for downloading Pysam.
  Web site for downloading and installing the fisher module.
  UCSC Web page for downloading Blat executables including gfServer and gfClient.
  Wikipedia page describing the FASTQ format.‐specs/SAMv1.pdf
  SAM/BAM specifications.
  SAMtools Web page.‐line‐overview.shtml
  Picard tools for handling SAM/BAM files.
  RADAR Web site comprising a compilation of known RNA editing in human, mouse and fly.
PDF or HTML at Wiley Online Library