STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post‐Translational Modifications

Jean L. Spencer1, Vivek N. Bhatia1, Stephen A. Whelan1, Catherine E. Costello1, Mark E. McComb1

1 Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, Massachusetts
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 13.22
DOI:  10.1002/0471250953.bi1322s44
Online Posting Date:  December, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The identification of protein post‐translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography–tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post‐Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi‐sample comparison by collating, scoring, and ranking PTMs, and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans‐Proteomic Pipeline. The easy‐to‐use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting. Curr. Protoc. Bioinform. 44:13.22.1‐13.22.36. © 2013 by John Wiley & Sons, Inc.

Keywords: post‐translational modifications; PTMs; proteomics; mass spectrometry; spectral counting; software; biomarkers

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Setting Up Strap PTM Analysis
  • Basic Protocol 2: Viewing STRAP PTM Results
  • Guidelines for Understanding Results
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Allmer, J. 2012. Existing bioinformatics tools for the quantitation of post‐translational modifications. Amino Acids 42:129‐138.
  Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O'Donovan, C., Redaschi, N., and Yeh, L.S. 2004. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 32:D115‐D119.
  Bhatia, V.N., Perlman, D.H., Costello, C.E., and McComb, M.E. 2011. Software and algorithm for differential characterization of post‐translational modifications. 59th ASMS Conference, Denver, Colorado. June 5‐9. American Society for Mass Spectrometry (ASMS), Santa Fe, N.M.
  Boucher, I., Kehasse, A., Marcincin, M., Rich, C., Rahimi, N., and Trinkaus‐Randall, V. 2011. Distinct activation of epidermal growth factor receptor by UTP contributes to epithelial cell wound repair. Am. J. Pathol. 178:1092‐1105.
  Chakrabarti, S., Rizvi, M., Pathak, D., Kirber, M.T., and Freedman, J.E. 2009. Hypoxia influences CD40‐CD40L mediated inflammation in endothelial and monocytic cells. Immunol. Lett. 122:170‐184.
  Creasy, D.M. and Cottrell, J.S. 2004. Unimod: Protein modifications for mass spectrometry. Proteomics 4:1534‐1536.
  Deutsch, E.W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., Eng, J.K., Martin, D.B., Nesvizhskii, A.I., and Aebersold, R. 2010. A guided tour of the Trans‐Proteomic Pipeline. Proteomics 10:1150‐1159.
  Heinecke, N.L., Pratt, B.S., Vaisar, T., and Becker, L. 2010. PepC: Proteomics software for identifying differentially expressed proteins based on spectral counting. Bioinformatics 26:1574‐1575.
  Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74:5383‐5392.
  Li, Z., Adams, R.M., Chourey, K., Hurst, G.B., Hettich, R.L., and Pan, C. 2012. Systematic comparison of label‐free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J. Proteome Res. 11:1582‐1590.
  Liu, H., Sadygov, R.G., and Yates, J.R. 3rd. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76:4193‐4201.
  Ma, K., Vitek, O., and Nesvizhskii, A.I. 2012. A statistical model‐building perspective to identification of MS/MS spectra with PeptideProphet. BMC Bioinformatics 13 Suppl. 16:S1.
  McComb, M.E., Spencer, J.L., Bhatia, V.N., Whelan, S.A., Kehasse, A., Perlman, D.H., Heckendorf, C.F., and Costello, C.E. 2012. Counting strategies for differential characterization of post‐translational modifications. 60th ASMS Conference, Vancouver, BC. May 20‐24. American Society for Mass Spectrometry (ASMS), Santa Fe, N.M.
  Nesvizhskii, A.I. 2007. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 367:87‐119.
  Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75:4646‐4658.
  Semple, J.W. and Freedman, J. 2010. Platelets and innate immunity. Cell Mol. Life Sci. 67:499‐511.
  Spencer, J.L., Bhatia, V.N., Kehasse, A., Whelan, S.A., Heckendorf, C.F., Costello, C.E., and McComb, M.E. 2012. Characterization of post‐translational modifications using counting approaches. 11th HUPO Congress, Boston, Massachusetts. Sept. 9‐13. Human Proteome Organization (HUPO), Santa Fe, N.M.
  Spencer, J.L., Bhatia, V.N., Kehasse, A., Whelan, S.A., Heckendorf, C.F., Costello, C.E., and McComb, M.E. 2013. STRAP PTM: Differential characterization by PTM counting and much more. 61st ASMS Conference, Minneapolis, MN. June 9‐13. American Society for Mass Spectrometry (ASMS), Santa Fe, N.M.
  Zhu, W., Smith, J.W., and Huang, C.M. 2010. Mass spectrometry‐based label‐free quantitative proteomics. J. Biomed. Biotechnol. 2010:840518.
PDF or HTML at Wiley Online Library