Using DrugBank for In Silico Drug Exploration and Discovery

David S. Wishart1, Anthony Wu1

1 Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta
Publication Name:  Current Protocols in Bioinformatics
Unit Number:  Unit 14.4
DOI:  10.1002/cpbi.1
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

DrugBank is a fully curated drug and drug target database that contains 8174 drug entries including 1944 FDA approved small‐molecule drugs, 198 FDA‐approved biotech (protein/peptide) drugs, 93 nutraceuticals, and over 6000 experimental drugs. Additionally, 4300 non‐redundant protein (i.e., drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. DrugBank is primarily focused on providing both the query/search tools and biophysical data needed to facilitate drug discovery and drug development. This unit provides readers with a detailed description of how to effectively use the DrugBank database and how to navigate through the DrugBank Web site. It also provides specific examples of how to find chemical homologs of potential drug leads and how to identify potential drug targets from newly sequenced tumor samples. The intent of this unit is to give readers an introduction to the field of Web‐based drug discovery and to show how cheminformatics can be seamlessly integrated into the field of bioinformatics. © 2016 by John Wiley & Sons, Inc.

Keywords: database; bioinformatics; drug; chemical; drug target

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Unit Introduction
  • Basic Protocol 1: Navigating Through the DrugBank Web Site
  • Basic Protocol 2: Chemical Structure Similarity Searching
  • Basic Protocol 3: In Silico Drug Target Identification
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI‐BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389‐3402. doi: 10.1093/nar/25.17.3389.
  Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O'Donovan, C., Redaschi, N., and Yeh, L.‐S.L. 2005. The universal protein resource (UniProt). Nucleic Acids Res. 33:D154‐159. doi: 10.1093/nar/gki070.
  Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths‐Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., and Eddy, S.R. 2004. The Pfam protein families database. Nucleic Acids Res. 32:D138‐141. doi: 10.1093/nar/gkh121.
  Benson, D.A., Karsch‐Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D.L. 2005. GenBank. Nucleic Acids Res. 33:D34‐D38. doi: 10.1093/nar/gki063.
  Coggill, P., Finn, R.D., and Bateman, A. 2008. Identifying protein domains with the pfam database. Curr. Protoc. Bioinform. 23:2.5:2.5.1‐2.5.17. doi: 10.1002/0471250953.bi0205s23.
  Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., and Laufer, J. 1992. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput Sci. 32:244‐255. doi: 10.1021/ci00007a012.
  Degtyarenko, K., Hastings, J., de Matos, P., and Ennis, M. 2009. ChEBI: An open bioinformatics and cheminformatics resource. Curr. Protoc. Bioinform. 26:14.9.1‐14.9.20. doi: 10.1002/0471250953.bi1409s26.
  Gong, L., Owen, R.P., Gor, W., Altman, R.B., and Klein, T.E. 2008. PharmGKB: An integrated resource of pharmacogenomic data and knowledge. Curr. Protoc. Bioinform. 23: 14.7.1–14.7.17. doi: 10.1002/0471250953.bi1407s23.
  Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., and McKusick, V.A. 2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33:D514‐517. doi: 10.1093/nar/gki033.
  Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M., and Steinbeck, C. 2013. The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Res. 41:D456‐463. doi: 10.1093/nar/gks1146.
  Hatfield, C.L., May, S.K., and Markoff, J.S. 1999. Quality of consumer drug information provided by four Web sites. Am. J. Health Syst. Pharm. 56:2308‐2311.
  Hecker, N., Ahmed, J., von Eichborn, J., Dunkel, M., Macha, K., Eckert, A., Gilson, M.K., Bourne, P.E., and Preissner, R. 2012. SuperTarget goes quantitative: Update on drug‐target interactions. Nucleic Acids Res. 40:D1113‐1117. doi: 10.1093/nar/gkr912.
  Heller, S.R., McNaught, A., Pletnev, I., Stein, S., and Tchekhovskoi, D. 2015. InChI, the IUPAC International Chemical Identifier. J. Cheminform. 30:7:23.
  Hewett, M., Oliver, D.E., Rubin, D.L., Easton, K.L., Stuart, J.M., Altman, R.B., and Klein, T.E. 2002. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 30:163‐165. doi: 10.1093/nar/30.1.163.
  Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. 2014. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 42:D199‐205. doi: 10.1093/nar/gkt1076.
  Ladunga, I. 2009. Finding homologs in amino acid sequences using network BLAST searches. Curr. Protoc. Bioinform. 25:3.4.1‐3.4.34. doi: 10.1002/0471250953.bi0304s25.
  Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z.T., Han, B., Zhou, Y., and Wishart, D.S. 2014. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 42:D1091‐1097. doi: 10.1093/nar/gkt1068.
  McDonagh, E.M., Whirl‐Carrillo, M., Garten, Y., Altman, R.B., and Klein, T.E. 2011. From pharmacogenomic knowledge acquisition to clinical applications: The PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med. 5:795‐806. doi: 10.2217/bmm.11.94.
  Orth, A.P., Batalov, S., Perrone, M., and Chanda, S.K. 2004. The promise of genomics to identify novel therapeutic targets. Expert Opin. Ther. Targets 8:587‐596. doi: 10.1517/14728222.8.6.587.
  Pundir, S., Magrane, M., Martin, M.J., O'Donovan, C., and The UniProt Consortium. 2015. Searching and navigating UniProt databases. Curr. Protoc. Bioinform. 50:1.27.1‐1.27.10. doi: 10.1002/0471250953.bi0127s50.
  Qin, C., Zhang, C., Zhu, F., Xu, F., Chen, S.Y., Zhang, P., Li, Y.H., Yang, S.Y., Wei, Y.Q., Tao, L., and Chen, Y.Z. 2014. Therapeutic target database update 2014: A resource for targeted therapeutics. Nucleic Acids Res. 42:D1118‐1123. doi: 10.1093/nar/gkt1129.
  Rebhan, M., Chalifa‐Caspi, V., Prilusky, J., and Lancet, D. 1998. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14:656‐664. doi: 10.1093/bioinformatics/14.8.656.
  Rego, N. and Koes, D. 2015. 3Dmol.js: Molecular visualization with WebGL. Bioinformatics 15:1322‐1324. doi: 10.1093/bioinformatics/btu829.
  Tanabe, M. and Kanehisa, M. 2012. Using the KEGG database resource. Curr. Protoc. Bioinform. 38:1.12.1‐1.12.43.
  Ullman, J.R. 1976. An algorithm for subgraph isomorphism. J. Assoc. Comput. Machinery 23:31‐42. doi: 10.1145/321921.321925.
  Weininger, D. 1988. SMILES 1. Introduction and encoding rules. J. Chem. Inf. Comput. Sci. 28:31‐38. doi: 10.1021/ci00057a005.
  Westbrook, J., Feng, Z., Jain, S., Bhat, T.N., Thanki, N., Ravichandran, V., Gilliland, G.L., Bluhm, W., Weissig, H., Greer, D.S., Bourne, P.E., and Berman, H.M. 2002. The protein data bank: Unifying the archive. Nucleic Acids Res. 30:245‐248. doi: 10.1093/nar/30.1.245.
  Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., and Federhen, S., Helmberg, W., Kenton, D.L., Khovayko, O., Lipman, D.J., Madden, T.L., Maglott, D.R., Ostell, J., Pontius, J.U., Pruitt, K.D., Schuler, G.D., Schriml, L.M., Sequeira, E., Sherry, S.T., Sirotkin, K., Starchenko, G., Suzek, T.O., Tatusov, R., Tatusova, T.A., Wagner, L., and Yaschenko, E. 2006. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 34:D173‐180. doi: 10.1093/nar/gkj158.
  Wishart, D.S., Knox, C., Guo, A., Shrivastava, S., Hassanali, M., Stothard, P., and Woolsey, J. 2006. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids. Res. 34:D668‐672. doi: 10.1093/nar/gkj067.
Internet Resources
  http://www.drugbank.ca
  DrugBank Web site.
  http://pubchem.ncbi.nlm.nih.gov/
  PubChem Web site.
  http://bidd.nus.edu.sg/group/cjttd/
  TTD Web site.
  http://www.genome.jp/kegg/drug/
  KEGG drug database Web site.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library