Isolation of Renal Brush Borders

D. James Morré1, Timothy Hammond2

1 Purdue University, West Lafayette, Indiana, 2 Tulane University School of Medicine and Southeast Louisianna Veterans Health Care System, New Orleans, Louisianna
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 3.26
DOI:  10.1002/0471143030.cb0326s34
Online Posting Date:  March, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Methods are described to isolate intact brush borders and brush border membranes from renal cell homogenates. A rapid method yields sealed vesicles that reconstitute renal brush border transport. In one variation of this protocol, 10 to 20 mM CaCl2 or MgCl2 is added to aggregate non‐brush border structures for subsequent removal by centrifugation. For analytical studies, guidance is provided for subsequent purification steps including preparative free‐flow and aqueous two‐phase partition. Marker enzymes and morphological parameters are included for assessment of yield and fraction purity.

Keywords: kidney; brush border; isolation; aqueous two phase

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Isolation of Renal Brush Border by Rate Zonal Sucrose Gradients
  • Alternate Protocol 1: Isolation of Kidney Brush Borders by Bivalent Metal Precipitation
  • Alternate Protocol 2: Isolation of Renal Brush Border for Dye/Buffer Uptake
  • Alternate Protocol 3: Isolation of Renal Cortical Membranes Using an Aqueous Two‐Phase Partition Technique
  • Alternate Protocol 4: Incremental Aqueous Two‐Phase Partition Fractionation of Rat Kidney to Yield Both Brush Border and Endosomes
  • Support Protocol 1: Study of Brush Border Membrane Vesicles by Flow Cytometry
  • Support Protocol 2: Analysis of Marker Enzymes for Renal Brush Border
  • Support Protocol 3: Analysis of Renal Brush Border Preparations by Electron Microscopy
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Isolation of Renal Brush Border by Rate Zonal Sucrose Gradients

  • New Zealand white male rabbits (2 to 3 kg)
  • 0.5, 1.4, and 1.7 M sucrose solutions in distilled or deionized water
  • Forceps
  • Scalpel blade or scissors
  • Ground glass homogenizers (hand‐held and motor‐driven e.g., 15‐ml Dounce homogenizer and Potter‐Elvehjem with Teflon pestle, respectively)
  • Polytron homogenizer
  • Phase‐contrast microscope
  • 35‐ml polyallomer ultracentrifuge tubes
  • Refrigerated centrifuge (90,000 × g) with a swinging‐bucket rotor

Alternate Protocol 1: Isolation of Kidney Brush Borders by Bivalent Metal Precipitation

  • 1 M MgCl 2
  • Homogenate of rabbit kidney cortex (prepared from frozen rabbit kidney, see protocol 1, steps 1 to 6)
  • 300 mM mannitol/12 mM HEPES, pH 7.4 (adjusted with Tris)

Alternate Protocol 2: Isolation of Renal Brush Border for Dye/Buffer Uptake

  • Kidneys harvested from one or more (depending on requirements) pentobarbital‐anaesthetized male Sprague‐Dawley rats, 200 to 250 g
  • 20% (w/v) dextran T‐500 (Pharmacia)
  • 40% (w/v) polyethylene glycol 3350 (PEG; Union Carbide or Fisher)
  • 0.2 M potassium phosphate, pH 7.2
  • 30‐ml Pyrex tube
  • Parafilm
  • Pasteur pipets
  • 50‐ml polyallomer tubes
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Berger, S.J. and Sacktor, B. 1970. Isolation and biochemical characterization of brush borders from rabbit kidney. J. Cell Biol. 47:637‐645.
   Biber, J., Steiger, B., Haase, W., and Murer, H. 1981. A high yield preparation for rat kidney brush border membranes: Different behaviour of lysosomal markers. Biochim. Biophys. Acta. 647:169‐176.
   Boffelli, D., Weber, F.E., Compassi, S., Werder, M., Schultess, G., and Hauser, H. 1997. Reconstitution and further characterization of the cholesterol transport activity of the small‐intestinal brush border membrane. Biochemistry 36:10784‐10792.
   Booth, A.G. and Kenny, A.J. 1974. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142:575‐581.
   Christensen, E.I. and Nielsen, S. 1991. Structural and functional features of protein handling in the kidney proximal tubule. Semin. Nephrol. 11:414‐439.
   Colas, B. and Marous, S. 1980. Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes. Biochim. Biophys. Acta 600:406‐420.
   Coudrier, E., Kerjaschki, D., and Louvard, D. 1988. Cytoskeleton organization and submenbranous interactions in intestinal and renal brush borders. Kidney Int. 34:309‐320.
   Cutillas, P.R., Biber, J., Marks, J., Jacob, R., Steiger, B., Cramer, R., Waterfield, M., Burlingame, A.L., and Unwin, R.J. 2005. Proteomic analysis of plasma membrane vesicles isolated from the rate renal cortex. Proteomics 5:101‐112.
   Ferracci, H. and Maroux, S. 1980. Rabbit intestinal amino peptidase N. Purification and molecular properties. Biochim. Biophys. Acta 599:448‐463.
   Gingras, D., Boivin, D., and Beliveau, R. 1994. Asymmetrical distribution of L‐isoaspartyl protein carboxyl methyltransferases in the plasma membranes of rat kidney cortex. Biochem. J. 297:145‐150.
   Gorvel, J.P., Mawas, C., Maroux, S., and Mishal, Z. 1984. Flow cytometry is a new method for the characterization of intestinal plasma membrane. Biochem. J. 221:453‐457.
   Hammond, T.G. 1990. Study of rat renal brush border membrane vesicles by flow cytometry. Kidney Int. 38:5‐11.
   Hammond, T.G. and Veroust, P.J. 1994. Heterogeneity of endosomal populations in the rat renal cortex: Light endosomes. Am. J. Physiol. 266:C1783‐C1794.
   Hammond, T.G., Majewski, R.R., Onorato, J.J., Brazy, P.C., and Morré, D.J. 1993. Isolation and characterization of renal cortical membranes using aqueous two‐phase partition technique. Biochem. J. 292:743‐748.
   Hammond, T.G., Verroust, P.J., Majewski, R.R., Muse, K.E., and Oberley, T.D. 1994. Heavy endosomes isolated from the rat renal cortex show attributes of intermicrovillar clefts. Am. J. Physiol. 267:F516‐F527.
   Karniski, L.P. 2001. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: Correlation between sulfate transport activity and chondrodysplasia phenotype. Hum. Mol. Genet. 10:1485‐1490.
   Kashiwamata, S., Goto, S., Semba, R.K., and Suzuki, F.N. 1979. Inhibition by bilirubin of (Na+ + K+)‐activated adenosine triphosphatase and K+‐activated p‐nitrophenylphosphatase activities of NaI‐treated microsomes from young rat cerebrum. J. Biol Chem. 254:4577‐4584.
   Larsson, C. 1985. Plasma membranes. In Modern Methods of Plant Analysis. New Series, Vol. 1. (H.F. Linskins and J.F. Jackson, eds.) pp. 85‐104. Springer. Berlin, Heidelberg.
   Maunsbach, A.B. 1976. Cellular mechanisms of tubular protein transport. Int. Rev. Physiol. 11:145‐167.
   Mircheff, A.K., Ives, H.E., Yee, V.I., and Warnoch, D.G. 1984. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation. Am. J. Physiol 246:F853‐F858.
   Morré, D.J. and Morré, D.M. 1989. Preparation of mammalian plasma membranes by aqueous two‐phase partition. BioTechniques 7:946‐958.
   Morré, D.J., Lawrence, J., Safranski, K., Hammond, T., and Morré, D.M. 1994. Experimental basis for separation of membrane vesicles by preparative free‐flow electrophoresis. J. Chromatog. 668:201‐214.
   Murer, H. and Gmaj, P. 1986. Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int. 30:171‐186.
   Murer, H. and Kinne, R. 1980. The use of isolated membrane vesicles to study epithelial transport processes. J. Memb. Biol. 55:81‐95.
   Nordlie, R.C. and Arion, W.J. 1966. Glucose‐6‐phosphatase. Methods Enzymol. 9:619‐625.
   Pennington, R.J. 1961. Biochemistry of dystrophic muscle. Mitochondrial succinic tetrazolium reductase and adenosine triphosphatase. Biochem. 80:649‐654.
   Piqueras, A.I., Somers, M., Hammond, T.G., Strange, K., Harris, H.W., Jr, Gawryl, M., and Zeidel, M.L. 1994. Permeability properties of rat renal lysosomes. Am. J. Physiol. 266:C121‐C133.
   Shirazi, S.P., Bechey, R.B., and Butterworth, P.J. 1980. The use of potent inhibitors of alkaline phosphatase to investigate the role of the enzyme in intestinal transport or inorganic phosphate. Biochem. J. 194:803‐809.
   Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Garnter, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76‐85.
   Tsao, B. and Curthoys, N.P. 1980. The absolute asymmetry of orientation of gamma‐glutamyltranspeptidase and aminopeptidase on the external surface of the rat renal brush border membrane. J. Biol. Chem. 255:7708‐7711.
   Tulsiani, D.R.P., Opheim, D.J., and Touster, O. 1977. Purification and characterization of α‐D‐mannosidase from rat liver Golgi membranes. J. Biol. Chem. 252:3227‐3233.
   Verroust, P.J., Christense, E.I., and Hammond, T.G. 1996. Endocytosis and receptors:molecular and physiological aspects. Nephrologie 17:359‐364.
   Yoshioka, S., Suzuki, T., and Kawakita, M. 1997. Analysis of the distribution of Na+/H+ exchanger isoforms among the plasma membrane subfractions of bovine kidney cortex: Reevaluation of methods for fractionating the brush‐border and the basolateral membranes. J. Biochem. 122:641‐646.
   Yusufi, A.N., Murayama, N., Gapstur, S.M., Szczepanska‐Konkel, M., and Dousa, T.P. 1994. Differential properties of brush‐border membrane vesicles from early and late proximal tubules of rat kidney. Biochim. Biophys. Acta 1191:117‐132.
PDF or HTML at Wiley Online Library