Isolation of Nucleoli

Sabine Hacot1, Yohann Coute2, Stéphane Belin1, Marie Alexandra Albaret1, Hichem C. Mertani1, Jean‐Charles Sanchez3, Manuel Rosa‐Calatrava1, Jean‐Jacques Diaz1

1 Université de Lyon, Lyon, France, 2 CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, France and Université Joseph Fourier, Grenoble, France, 3 Biomedical Proteomics Research Group, Département de Biologie Structurale et Bioinformatique, Centre Médical Universitaire, Geneva, Switzerland
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 3.36
DOI:  10.1002/0471143030.cb0336s47
Online Posting Date:  June, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Nucleoli are now recognized as multi‐functional nuclear domains involved in several fundamental cell processes such as ribosome biogenesis, regulation of the assembly of non‐ribosomal ribonucleoprotein complexes, tRNA maturation, sequestration of protein, viral infection, and cellular ageing. Extensive proteomic analyses of these nucleolar domains after their purification have contributed to the description of their multiple biological functions. Because nucleoli are the largest and densest nuclear structures, they are easily amenable to purification from nuclei of cultured animal cells using the protocol described in this unit. Curr. Protoc. Cell Biol. 47:3.36.1‐3.36.10. © 2010 by John Wiley & Sons, Inc.

Keywords: nuclear domain; nucleoli; cell fractionation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation of Nucleoli from Adherent Cell Cultures
  • Support Protocol 1: One‐Dimensional SDS Gel Electrophoresis of Proteins
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Isolation of Nucleoli from Adherent Cell Cultures

  • 15 × 106 cultured adherent cells plated on 100‐ or 150‐mm Petri dishes
  • Dulbecco's phosphate buffered saline for cell culture (DPBS; appendix 2A), ice cold
  • Nucleoli standard buffer (NSB; see recipe)
  • 10% (v/v) Nonidet P‐40 (NP‐40)
  • 250 mM sucrose/10 mM MgCl 2
  • 880 mM sucrose/5 mM MgCl 2
  • 340 mM sucrose/5 mM MgCl 2
  • 0.34 M sucrose buffer
  • Cell scrapers (Biologix Research Company)
  • 15‐ml polypropylene centrifuge tubes
  • Refrigerated centrifuge (Jouan, CR422)
  • Micropipets
  • Phase contrast microscope
  • 0.4‐mm clearance Dounce homogenizer (Wheaton type; Kimble/Kontes)
  • Sonicator (Vibracell 72434; Bioblock Scientific)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Ahmad, Y., Boisvert, F.M., Gregor, P., Cobley, A., and Lamond, A.I. 2009. NOPdb: Nucleolar Proteome Database—2008 update. Nucleic Acids Res. 37:D181‐D184.
   Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K., Lam, Y.W., Steen, H., Mann, M., and Lamond, A.I. 2002. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12:1‐11.
   Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I., and Mann, M. 2005. Nucleolar proteome dynamics. Nature 433:77‐83.
   Brown, J.W., Shaw, P.J., Shaw, P., and Marshall, D.F. 2005. Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res. 33:D633‐D636.
   Busch, H., Muramatsu, M., Adams, H., Steele, W.J., Liau, M.C., and Smetana, K. 1963. Isolation of nucleoli. Exp. Cell Res. 24:S9:150‐163.
   Busch, H., Lane, M., Adams, H.R., Debakey, M.E., and Muramatsu, M. 1965. Isolation of nucleoli from human tumors. Cancer Res. 25:225‐233.
   Busch, H., Desjardins, R., Grogan, D., Higashi, K., Jacob, S.T., Muramatsu, M., Ro, T.S., and Steele, W.J. 1966. Composition of nucleoli isolated from mammalian cells. J. Natl. Cancer Inst. Monogr. 23:193‐212.
   Carter, K.C., Bowman, D., Carrington, W., Fogarty, K., McNeil, J.A., Fay, F.S., and Lawrence, J.B. 1993. A three‐dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 259:1330‐1335.
   Comai, L. 1999. The nucleolus: A paradigm for cell proliferation and aging. Brazilian J. Med. Biolog. Res. 32:1473‐1478.
   Coute, Y., Burgess, J.A., Diaz, J.J., Chichester, C., Lisacek, F., Greco, A., and Sanchez, J.C. 2006. Deciphering the human nucleolar proteome. Mass Spectrom. Rev. 25:215‐234.
   Dundr, M. and Misteli, T. 2001. Functional architecture in the cell nucleus. Biochem. J. 356:297‐310.
   Fontana, F. 1781. Traité sur le venin de la vipère. Florence.
   Gallagher, S., Winston, S.E., Fuller, S.A., and Hurrell, J.G.R. 2008. Immunoblotting and immunodetection. Curr. Protoc. Mol. Biol. 83:10.8.1‐10.8.28.
   Gonzalez‐Camacho, F. and Medina, F.J. 2004. Identification of specific plant nucleolar phosphoproteins in a functional proteomic analysis. Proteomics 4:407‐417.
   Granboulan, N. and Granboulan, P. 1965. Ultrastructure cytochemistry of the nucleolus. II. Study of the sites of RNA synthesis in the nucleolus and the nucleus. Exp. Cell Res. 38:604‐619.
   Henderson, A.S., Warburton, D., and Atwood, K.C. 1972. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. U.S.A. 69:3394‐3398.
   Hiscox, J.A. 2007. RNA viruses: Hijacking the dynamic nucleolus. Nat. Rev. Microbiol. 5:119‐127.
   Kressler, D., Linder, P., and de La Cruz, J. 1999. Protein trans‐acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 19:7897‐7912.
   Lewis, J.D. and Tollervey, D. 2000. Like attracts like: Getting RNA processing together in the nucleus. Science 288:1385‐1389.
   Melese, T. and Xue, Z. 1995. The nucleolus: An organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7:319‐324.
   Montanaro, L., Trere, D., and Derenzini, M. 2008. Nucleolus, ribosomes, and cancer. Am. J. Pathol. 173:301‐310.
   Muramatsu, M., Smetana, K., and Busch, H. 1963. Quantitative aspects of isolation of nucleoli of the Walker carcinosarcoma and liver of the rat. Cancer Res. 23:510‐518.
   Ochs, R.L. 1998. Methods used to study structure and function of the nucleolus. Methods Cell Biol. 53:303‐321.
   Olson, M.O. 2004. The Nucleolus. In Molecular Biology Intelligence Unit (R.G. Landes). Springer‐verlag, Heidelberg, Germany.
   Olson, M.O., Dundr, M., and Szebeni, A. 2000. The nucleolus: An old factory with unexpected capabilities. Trends Cell Biol. 10:189‐196.
   Pederson, T. 1998. The plurifunctional nucleolus. Nucleic Acids Res. 26:3871‐3876.
   Pendle, A.F., Clark, G.P., Boon, R., Lewandowska, D., Lam, Y.W., Andersen, J., Mann, M., Lamond, A.I., Brown, J.W., and Shaw, P.J. 2005. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16:260‐269.
   Phair, R.D. and Misteli, T. 2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604‐609.
   Raska, I., Shaw, P.J., and Cmarko, D. 2006. New insights into nucleolar architecture and activity. Int. Rev. Cytol. 255:177‐235.
   Scherl, A., Coute, Y., Deon, C., Calle, A., Kindbeiter, K., Sanchez, J.C., Greco, A., Hochstrasser, D., and Diaz, J.J. 2002. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13:4100‐4109.
   Simonian, M.H. and Smith, J.A. 2006. Spectrophotometric and colorimetric determination of protein concentration. Curr. Protoc. Mol. Biol. 76:10.1A.1‐10.1A.9.
   Sleeman, J.E. and Lamond, A.I. 1999. Nuclear organization of pre‐mRNA splicing factors. Curr. Opin. Cell Biol. 11:372‐377.
   Stoykova, A.S., Dabeva, M.D., Dimova, R.N., and Hadjiolov, A.A. 1985. Ribosome biogenesis and nucleolar ultrastructure in neuronal and oligodendroglial rat brain cells. J. Neurochem. 45:1667‐1676.
   Venema, J. and Tollervey, D. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33:261‐311.
PDF or HTML at Wiley Online Library