Isolation of Aggresomes and Other Large Aggregates

Anatoli B. Meriin1, Yan Wang1, Michael Y. Sherman1

1 Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 3.38
DOI:  10.1002/0471143030.cb0338s48
Online Posting Date:  September, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Upon permanent stresses and in various diseases, small protein aggregates may accumulate in cells and cause toxicity. A recently discovered protective system transports these aggregates to the centrosome location via microtubules, to form a large agglomerate of aggregates called the aggresome. Here, we describe a newly developed method for isolating aggresomes. This principle can also be used for purification of other large structures and even organelles. Curr. Protoc. Cell Biol. 48:3.38.1‐3.38.9. © 2010 by John Wiley & Sons, Inc.

Keywords: aggresome; aggregates; subcellular fractionation; yeast

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation of Aggresomes from Yeast
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation of Aggresomes from Yeast

  Materials
  • Wild‐type yeast strain W303 (MATa ade2‐1 trp1‐1 leu2‐3,112 his3‐11,15 ura3‐52 can1‐100 ssd1‐d)
  • pYES2 vector (used as a negative control) or pYES2‐based plasmids for expression of 103QP or 103Q constructs under control of the Gal1 promoter (Meriin et al., ); 103QP encodes the full exon 1 of mutant (103 glutamines extension) htt tagged with FLAG at the N‐terminus and with EGFP at the C‐terminus; 103Q is the same construct missing the proline‐rich domain of the exon 1
  • Selective medium with 2% (w/v) glucose (see recipe)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Selective medium with 2% (w/v) galactose (see recipe)
  • Lysis buffer (see recipe)
  • Glass beads (Sigma, cat. no. G8772)
  • Mouse anti‐FLAG monoclonal antibody (Sigma)
  • AffiniPure rabbit anti–mouse and goat anti–rabbit IgGs (H+L; Jackson ImmunoResearch Laboratories)
  • 50% (w/v) sucrose in lysis buffer
  • 30°C incubator
  • Bullet blender (NextAdvance)
  • 50‐ml Sephacryl S‐400 HR 2.5 (dia.) × 10–cm gel filtration column
  • Fluorescent microscope
  • 15‐ml test tubes
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Ahn, T.B. and Jeon, B.S. 2006. Protective role of heat shock and heat shock protein 70 in lactacystin‐induced cell death both in the rat substantia nigra and PC12 cells. Brain Res. 1087:159‐167.
   Burnett, B.G. and Pittman, R.N. 2005. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl. Acad. Sci. U.S.A. 102:4330‐4335.
   Chung, K.K., Dawson, V.L., and Dawson, T.M. 2001. The role of the ubiquitin‐proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci. 24:S7‐S14.
   Corboy, M.J., Thomas, P.J., and Wigley, W.C. 2005. Aggresome formation. Methods Mol. Biol. 301:305‐327.
   Doi, H., Mitsui, K., Kurosawa, M., Machida, Y., Kuroiwa, Y., and Nukina, N. 2004. Identification of ubiquitin‐interacting proteins in purified polyglutamine aggregates. FEBS Lett. 571:171‐176.
   Donaldson, K.M., Li, W., Ching, K.A., Batalov, S., Tsai, C.C., and Joazeiro, C.A. 2003. Ubiquitin‐mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl. Acad. Sci. U.S.A. 100:8892‐8897.
   Faber, P.W., Barnes, G.T., Srinidhi, J., Chen, J., Gusella, J.F., and MacDonald, M.E. 1998. Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7:1463‐1474.
   Garcia‐Mata, R., Bebok, Z., Sorscher, E.J., and Sztul, E.S. 1999. Characterization and dynamics of aggresome formation by a cytosolic GFP‐chimera. J. Cell Biol. 146:1239‐1254.
   Garcia‐Mata, R., Gao, Y.S., and Sztul, E. 2002. Hassles with taking out the garbage: Aggravating aggresomes. Traffic 3:388‐396.
   Heir, R., Ablasou, C., Dumontier, E., Elliott, M., Fagotto‐Kaufmann, C., and Bedford, F.K. 2006. The UBL domain of PLIC‐1 regulates aggresome formation. EMBO Rep. 7:1252‐1258.
   Kaltenbach, L.S., Romero, E., Becklin, R.R., Chettier, R., Bell, R., Phansalkar, A., Strand, A., Torcassi, C., Savage, J., Hurlburt, A., Cha, G.H., Ukani, L., Chepanoske, C.L., Zhen, Y., Sahasrabudhe, S., Olson, J., Kurschner, C., Ellerby, L.M., Peltier, J.M., Botas, J., and Hughes, R.E. 2007. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3:e82.
   Kawaguchi, Y., Kovacs, J.J., McLaurin, A., Vance, J.M., Ito, A., and Yao, T.P. 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727‐738.
   Kovacs, I., Lentini, K.M., Ingano, L.M., and Kovacs, D.M. 2006. Presenilin 1 forms aggresomal deposits in response to heat shock. J. Mol. Neurosci. 29:9‐19.
   Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., Dawson, V.L., and Dawson, T.M. 2005. Parkin mediates nonclassical, proteasomal‐independent ubiquitination of synphilin‐1: Implications for Lewy body formation. J. Neurosci. 25:2002‐2009.
   Lim, K.L., Dawson, V.L., and Dawson, T.M. 2006. Parkin‐mediated lysine 63‐linked polyubiquitination: A link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol. Aging 27:524‐529.
   McNaught, K.S., Shashidharan, P., Perl, D.P., Jenner, P., and Olanow, C.W. 2002. Aggresome‐related biogenesis of Lewy bodies. Eur. J. Neurosci. 16:2136‐2148.
   Meriin, A.B., Mabuchi, K., Gabai, V.L., Yaglom, J.A., Kazantsev, A., and Sherman, M.Y. 2001. Intracellular aggregation of polypeptides with expanded polyglutamine domain is stimulated by stress‐activated kinase mekk1. J. Cell Biol. 153:851‐864.
   Mitsui, K., Doi, H., and Nukina, N. 2006. Proteomics of polyglutamine aggregates. Methods Enzymol. 412:63‐76.
   Nawrocki, S.T., Carew, J.S., Pino, M.S., Highshaw, R.A., Andtbacka, R.H., Dunner, K. Jr., Pal, A., Bornmann, W.G., Chiao, P.J., Huang, P., Xiong, H., Abbruzzese, J.L., and McConkey, D.J. 2006. Aggresome disruption: A novel strategy to enhance bortezomib‐induced apoptosis in pancreatic cancer cells. Cancer Res. 66:3773‐3781.
   Olzmann, J.A. and Chin, L.S. 2008. Parkin‐mediated K63‐linked polyubiquitination: A signal for targeting misfolded proteins to the aggresome‐autophagy pathway. Autophagy 4:85‐87.
   Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131‐24145.
   Piazza, F.A., Gurrieri, C., Trentin, L., and Semenzato, G. 2007. Towards a new age in the treatment of multiple myeloma. Ann. Hematol. 86:159‐172.
   Quinlan, R.A., Brenner, M., Goldman, J.E., and Messing, A. 2007. GFAP and its role in Alexander disease. Exp. Cell Res. 313:2077‐2087.
   Seibenhener, M.L., Babu, J.R., Geetha, T., Wong, H.C., Krishna, N.R., and Wooten, M.W. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24:8055‐8068.
   Sherman, M.Y. and Goldberg, A.L. 2001. Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 29:15‐32.
   Suhr, S.T., Senut, M.C., Whitelegge, J.P., Faull, K.F., Cuizon, D.B., and Gage, F.H. 2001. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell Biol. 153:283‐294.
   Tanaka, M., Kim, Y.M., Lee, G., Junn, E., Iwatsubo, T., and Mouradian, M.M. 2004. Aggresomes formed by alpha‐synuclein and synphilin‐1 are cytoprotective. J. Biol. Chem. 279:4625‐4631.
   Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic‐Plese, S., and Fischbeck, K.H. 2003. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine‐containing protein. Hum. Mol. Genet. 12:749‐757.
   Wang, Y., Meriin, A.B., Costello, C. and Sherman, M.Y. 2007. Characterization of proteins associated with polyglutamine aggregates: A novel approach towards isolation of aggregates from protein conformation disorders. Prion 1:128‐135.
   Wang, Y., Meriin, A.B., Zaarur, N., Romanova, N.V., Chernoff, Y.O., Costello, C.E., and Sherman, M.Y. 2009. Abnormal proteins can form aggresome in yeast: aggresome‐targeting signals and components of the machinery. FASEB J. 23:451‐463.
   Zaarur, N., Meriin, A.B., Gabai, V.L., and Sherman, M.Y. 2008. Triggering aggresome formation. Dissecting aggresome‐targeting and aggregation signals in synphilin 1. J. Biol. Chem. 283:27575‐27584.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library