Purification of Ribosomes from Human Cell Lines

Stéphane Belin1, Sabine Hacot2, Lionel Daudignon2, Gabriel Therizols2, Stéphane Pourpe2, Hichem C. Mertani2, Manuel Rosa‐Calatrava2, Jean‐Jacques Diaz2

1 Boston Children Hospital/Harvard Medical School, Boston, Massachusetts, 2 Université de Lyon, Lyon, France
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 3.40
DOI:  10.1002/0471143030.cb0340s49
Online Posting Date:  December, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Highly conserved during evolution, the ribosome is the central effector of protein synthesis. In mammalian cells, the ribosome is a macromolecular complex composed of four different ribosomal RNAs (rRNA) and about 80 ribosomal proteins. Requiring more than 200 factors, ribosome biogenesis is a highly complex process that takes place mainly within the nucleoli of eukaryotic cells. Crystallographic data suggest that the ribosome is a ribozyme, in which the rRNA catalyses the peptide bond formation and ensures quality control of the translation. Ribosomal proteins are involved in this molecular mechanism; nonetheless, their role is still not fully characterized. Recent studies suggest that ribosomes themselves and/or the mechanisms underlying their synthesis, processing, and assembly play a key role in the establishment and progression of several human pathologies. The protocol described here is simple, efficient, and robust, and allows one to purify high‐quality ribosomes from human cultured cell lines. Ribosomes purified with this protocol are adequate for most of the subsequent analyses of their RNA and protein content. Curr. Protoc. Cell Biol. 49:3.40.1‐3.40.11. © 2010 by John Wiley & Sons, Inc.

Keywords: ribosome; cell fractionation; translation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Purification of Ribosomes
  • Support Protocol 1: One‐Dimensional SDS Polyacrylamide Gel Electrophoresis (SDS‐PAGE)
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Purification of Ribosomes

  • Cultured adherent cells
  • Appropriate medium for cells to be cultured
  • Dulbecco's phosphate‐buffered saline (DPBS; appendix 2A)
  • Buffers A, B, and C (see reciperecipes)
  • 10% (v/v) Nonidet P‐40
  • 4 M KCl
  • Sucrose cushion (see recipe)
  • 12.5% SDS‐PAGE gel (Gallagher, )
  • 150‐mm diameter Petri dishes
  • 15‐ and 50‐ml conical polypropylene centrifuge tubes (e.g., BD Falcon)
  • Cell lifters (Biologix Research Company; http://biologixresearch.com/)
  • Refrigerated centrifuge (e.g., Jouan CR422) for cell harvesting
  • 3‐ml thick‐walled polycarbonate tubes (Beckman)
  • Refrigerated ultracentrifuge with fixed‐angle rotor (e.g., Beckman TL‐100.3) for ribosome harvesting
  • Spectrophotometer capable of measuring at 260 nm
  • Additional reagents and equipment for protein quantification (see protocol 2 and Simonin and Smith, ), SDS‐PAGE (see protocol 2 and Gallagher, ), and staining gels (see protocol 2 and Sasse and Gallagher, )
NOTE: Carry out all procedures at 4°C using prechilled solutions.NOTE: This protocol is optimized for dissociated cytoplasmic ribosomal subunits. To purify polysomes, 40S and 60S subunits, or monosome 80S, buffers have to be modified. See for more details.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Balis, M.E., Samarth, K.D., Hamilton, M.G., and Petermann, M.L. 1958. Role of the ribonucleoprotein particle in protein synthesis and the effects of growth hormone. J. Biol. Chem. 233:1152‐1155.
   Ban, N., Nissen, P., Hansen, J.H., Moore, P.B., and Steitz, T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905‐920.
   Belin, S., Beghin, A., Solano‐Gonzalez, E., Bezin, L., Brunet‐Manquat, S., Textoris, J., Prats, A.C., Mertani, H.C., Dumontet, C., and Diaz, J.J. 2009. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE 4:e7147.
   Belin, S., Kindbeiter, K., Hacot, S., Albaret, M.A., Roca‐Martinez, J.X., Therizols, G., Grosso, R., and Diaz, J.J. 2010. Uncoupling ribosome biogenesis regulation from RNA polymerase I activity during herpes simplex virus type 1 infection. RNA 16:131‐140.
   Cech, T.R. 2000. Structural biology. The ribosome is a ribozyme. Science 289:878‐879.
   Chan, Y.L., Diaz, J.J., Denoroy, L., Madjar, J.J., and Wool, I.G. 1996. The primary structure of rat ribosomal protein L10: Relationship to a Jun‐binding protein and to a putative Wilms' tumor suppressor. Biochem. Biophys. Res. Commun. 225:952‐956.
   Chandramouli, P., Toof, M., Menetret, J.F., Eswar, N., Cannone, J.J., Gutell, R.R., Sali,. A., and Akev, C.W. 2008. Structure of the mammalian 80S ribosome at 8.7 Å resolution. Structure 16:535‐548.
   Couté, Y., Burgess, J.A., Diaz, J.J., Chichester, C., Lisacek, F., Greco, A., and Sanchez, J.C. 2006. Deciphering the human nucleolar proteome. Mass Spectrom. Rev. 25:215‐234.
   Decatur, W.A. and Fournier, M.J. 2002. rRNA modifications and ribosome function. Trends Biochem. Sci. 27:344‐351.
   Diaz, J.J., Gandrillon, O., Hentzen, D., Leguellic, D., Samarut, J., and Madjar, J.J. 1989. Increase in ribosomal protein S6 phosphorylation is due to v‐erbB‐transforming activity and not to v‐erbA mitogenic activity in avian erythroblastosis virus‐infected chicken embryo fibroblasts. Oncogene Res. 4:163‐175.
   Diaz, J.J., Simonin, D., Masse, T., Deviller, P., Kindbeiter, K., Denoroy, L., and Madjar, J.J. 1993. The herpes simplex virus type 1 US11 gene product is a phosphorylated protein found to be non‐specifically associated with both ribosomal subunits. J. Gen. Virol. 74:397‐406.
   Diaz, J.J., Dodon, M.D., Schaerer‐Ulthurralt, N., Simonin, D., Kindbeiter, K., Gazzolo, L., and Madjar, J.J. 1996. Post‐transcriptional transactivation of human retroviral envelope glycoprotein expression by herpes simplex virus Us11 protein. Nature 379:273‐277.
   Diaz J.J., Giraud, S., and Greco, A. 2002. Alteration of ribosomal protein maps in herpes simplex virus type 1 infection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771:237‐249.
   Fromont‐Racine, N.M., Sanger, B., Saveanu, C., and Pasiolo, F. 2003. Ribosome assembly in eukaryotes. Gene 313:17‐42.
   Gallagher, S.R. 2006. One‐dimensional SDS gel electrophoresis of proteins. Curr. Protoc. Mol. Biol. 75:10.2A.1‐10.2A.37.
   Görg, A., Obermaier, C., Boguth, G., Csordas, A., Diaz, J.J., and Madjar, J.J. 1997. Very alkaline immobilized pH gradients for two‐dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18:328‐337.
   Greco, A., Bienvenut, W., Sanchez, J.C., Kindbeiter, K., Hochstrasser, D., Madjar, J.J., and Diaz, J.J. 2001. Identification of ribosome‐associated viral and cellular basic proteins during the course of infection with herpes simplex virus type 1. Proteomics 1:545‐549.
   Idol, R.A., Robledo. S., Du, H.Y., Crimmins, D.L., Wilson, D.B., Ladenson, J.H., Besler, M., and Mason, P.J. 2007. Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol. Dis. 39:35‐43.
   Komili, S., Farny, N.G., Roth, F.P., and Silver, P.A. 2007. Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557‐571.
   Madjar, J.J. 1994. Preparation of ribosomes and ribosomal proteins from cultured cells. In Cell Biology: A Laboratory Handbook (J.E. Celis, ed.) pp. 657‐661. Academic Press, New York.
   Madjar, J.J. and Fournier, A. 1981. Bombyx mori L. ribosomal proteins: Resolution, nomenclature, molecular weights and in vivo phosphorylation. Mol. Gen. Gene. 182:273‐278.
   Madjar, J.J., Arpin, M., Marion, M.J., and Reboud, J.P. 1977. Comparison of the protein content of free and membrane‐bound rat liver polysomes and of the derived subunits. Mol. Biol. Rep. 3:289‐296.
   Madjar, J.J., Arpin, M., Buisson, M., and Reboud, P. 1979. Spot position of rat liver ribosomal proteins by four different two‐dimensional electrophoreses in polyacrylamide gel. Mol. Gen. Genet. 171:121‐134.
   Makowski, I., Frolow, F., Saper, M.A., Shoham, M., Whitmann, H.G., and Yonath, A. 1987. Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 Å. J. Mol. Biol. 193:819‐822.
   Massé, T., Garcin, D., Jacquemont, B., and Madjar, J.J. 1990a. Herpes simplex virus type‐1‐induced stimulation of ribosomal protein S6 phosphorylation is inhibited in neomycin‐treated human epidermoid carcinoma 2 cells and in ras‐transformed cells. Eur. J. Biochem. 194:287‐291.
   Massé, T., Garcin, D., Jacquemont, B., and Nadjar, J.J. 1990b. Ribosome and protein synthesis modifications after infection of human epidermoid carcinoma cells with herpes simplex virus type 1. Mol. Gen. Genet. 220:377‐388.
   Moore, P.B. and Steitz, T.A. 2002. The involvement of RNA in ribosome function. Nature 418:229‐235.
   Narla, A. and Ebert, B.L. 2010. Ribosomopathies: Human disorders of ribosome dysfunction. Blood 115:3196‐3205.
   Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920‐930.
   Palade, G.E. 1955. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1:59‐68.
   Rudra, D. and Warner, J.R.. 2004. What better measure than ribosome synthesis? Genes Dev. 18:2431‐2436.
   Ruggero, D. and Pandolfi, P.P. 2003. Does the ribosome translate cancer? Nat. Rev. Cancer 3:179‐192.
   Sasse, J. and Gallagher, S.R. 2009. Staining proteins in gels. Curr. Protoc. Mol. Biol. 85:10.6.1‐10.6.27.
   Schuwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila‐Sanjurjo, A., Holton, J.M., and Cate, J.H. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827‐834.
   Simonin, M.H. and Smith, J.A. 2008. Spectrophotometric and colorimetric determination of protein concentration. Curr. Protoc. Mol. Biol. 76:10.1A.1‐10.1A.9.
   Simonin, D., Diaz, J.J., Kindbeiter, K., Pernas, P., and Madjar, J.J. 1995a. Phosphorylation of herpes simplex virus type 1 Us11 protein is independent of viral genome expression. Electrophoresis 16:1317‐1322.
   Simonin, D., Diaz, J.J., Kindbeiter, K., Denory, L., and Madjar, J.J. 1995b. Phosphorylation of ribosomal protein L30 after herpes simplex virus type 1 infection. Electrophoresis 16:854‐859.
   Simonin, D., Diaz, J.J., Masse, T., and Madjar, J.J. 1997. Persistence of ribosomal protein synthesis after infection of HeLa cells by herpes simplex virus type 1. J. Gen. Virol. 78:435‐443.
   Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G., and Frank, J. 2001. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA‐ribosome and subunit‐subunit interactions. Cell 107:373‐386.
   Tissieres, A. and Watson, J.D. 1958. Ribonucleoprotein particles from Escherichia coli. Nature 182:778‐780.
   Trakhanov, S., Yusupov, M., Shirokov, V., Garber, M., Mitschlker, A., Ruff, M., Thiery, J.C., and Moras, D. 1989. Preliminary X‐ray investigation of 70S ribosome crystals from Thermus thermophilus. J. Mol. Biol. 209:327‐328.
   Warner, J.R. 1999 The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437‐440.
   Warner, J.R. and Knopf, P.M. 2002. The discovery of polyribosomes. Trends Biochem. Sci. 27:376‐380.
   Wimberly, B.T., Brodersen, D.E., Clemons, W.M. Jr., Morgan‐Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. 2000. Structure of the 30S ribosomal subunit. Nature 407:327‐339.
   Wool, I.G., Chan, Y.‐L., and Glück, A. 1996. Mammalian ribosomes: the structure and the evolution of the proteins. In Translational Control (J.W.B. Hershey and M.B. Mathews, eds.) pp. 685‐732. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
   Yonath, A., Bartunik, H.D., Bartels, K.S., and Witmann, H.G. 1984. Some x‐ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. J. Mol. Biol. 177:201‐206.
   Yoon, A., Peng, G., Brandenburger, Y., Zoillo, O., Xu, W., Rego, E., and Ruggero, D. 2006. Impaired control of IRES‐mediated translation in X‐linked dyskeratosis congenita. Science 312:902‐906.
   Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H., and Noller, H.F. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883‐896.
PDF or HTML at Wiley Online Library