Two‐Photon Excitation Microscopy for the Study of Living Cells and Tissues

Richard K.P. Benninger1, David W. Piston2

1 University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 2 Vanderbilt University Medical Center, Nashville, Tennessee
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 4.11
DOI:  10.1002/0471143030.cb0411s59
Online Posting Date:  June, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Two‐photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three‐dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two‐photon excitation and discuss the advantages and limitations of its use in laser‐scanning microscopy. The principal advantages of two‐photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two‐photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two‐photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. Curr. Protoc. Cell Biol. 59:4.11.1‐4.11.24. © 2013 by John Wiley & Sons, Inc.

Keywords: fluorescence; microscopy; two‐photon excitation; confocal microscopy

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Two‐Photon Excitation
  • Practical Considerations for Two‐Photon Excitation Microscopy
  • Examples of Two‐Photon Excitation Microscopy
  • Conclusions
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Albota, M.A., Xu, C., and Webb, W.W. 1998. Two‐photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl. Optics 37:7352‐7356.
   Araya, R., Eisenthal, K.B., and Yuste, R. 2006. Dendritic spines linearize the summation of excitatory potentials. Proc. Natl. Acad. Sci. U.S.A. 103:18799‐18804.
   Barretto, R.P., Ko, T.H., Jung, J.C., Wang, T.J., Capps, G., Waters, A.C., Ziv, Y., Attardo, A., Recht, L., and Schnitzer, M.J. 2011. Time‐lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17:223‐228.
   Beaurepaire, E., Oheim, M., and Mertz, J. 2001. Ultra‐deep two‐photon fluorescence excitation in turbid media. Opt. Comm. 188:25‐29.
   Bennett, B.D., Jetton, T.L., Ying, G., Magnuson, M.A., and Piston, D.W. 1996. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J. Biol. Chem. 271:3647‐3651.
   Benninger, R.K., Ashby, W.J., Ring, E.A., and Piston, D.W. 2008. Single‐photon‐counting detector for increased sensitivity in two‐photon laser scanning microscopy. Opt. Lett. 33:2895‐2897.
   Benninger, R.K., Hao, M., and Piston, D.W. 2008. Multi‐photon excitation imaging of dynamic processes in living cells and tissues. Rev. Physiol. Biochem. Pharmacol. 160:71‐92.
   Benninger, R.K.P., Remedi, M.S., Head, W.S., Ustione, A., Piston, D.W., and Nichols, C.G. 2011. Defects in beta cell Ca(2)+ signalling, glucose metabolism and insulin secretion in a murine model of K(ATP) channel‐induced neonatal diabetes mellitus. Diabetologia 54:1087‐1097.
   Bestvater, F., Spiess, E., Stobrawa, G., Hacker, M., Feurer, T., Porwol, T., Berchner‐Pfannschmidt, U., Wotzlaw, C., and Acker, H. 2002. Two‐photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J. Microsc. 208:108‐115.
   Booth, M.J., Neil, M.A.A., and Wilson, T. 1998. Aberration correction for confocal imaging in refractive‐index‐mismatched media. J. Microsc. 192:90‐98.
   Booth, M.J., Neil, M.A., Juskaitis, R., and Wilson, T. 2002. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U.S.A. 99:5788‐5792.
   Celli, S., Albert, M.L., and Bousso, P. 2011. Visualizing the innate and adaptive immune responses underlying allograft rejection by two‐photon microscopy. Nat. Med. 17:744‐749.
   Chu, S.W., Chan, M.C., Tai, S.P., Keller, S., DenBaars, S.P., and Sun, C.K. 2005. Simultaneous four‐photon luminescence, third‐harmonic generation, and second‐harmonic generation microscopy of GaN. Opt. Lett. 30:2463‐2465.
   Crosignani, V., Dvornikov, A.S., and Gratton, E. 2011. Enhancement of imaging depth in turbid media using a wide area detector. J. Biophotonics 4:592‐599.
   Dakin, K. and Li, W.H. 2006. Infrared‐LAMP: Two‐photon uncaging and imaging of gap junctional communication in three dimensions. Nat. Methods 3:959.
   Dakin, K., Zhao, Y., and Li, W.H. 2005. LAMP, a new imaging assay of gap junctional communication unveils that Ca2+ influx inhibits cell coupling. Nat. Methods 2:55‐62.
   Denk, W. 1994. 2‐Photon scanning photochemical microscopy—mapping ligand‐gated ion‐channel distributions. Proc. Natl. Acad. Sci. U.S.A. 91:6629‐6633.
   Denk, W., Strickler, J.H., and Webb, W.W. 1990. Two‐Photon laser scanning fluorescence microscopy. Science 248:73‐76.
   Denk, W., Piston, D.W. and Webb, W.W. 1995. Two‐photon excitation in laser scanning microscopy. In Handbook of Biological Confocal Microscopy (J. Pawley, ed.) pp. 445‐458. Plenum, New York.
   Drobizhev, M., Tillo, S., Makarov, N.S., Hughes, T.E., and Rebane, A. 2009. Absolute two‐photon absorption spectra and two‐photon brightness of orange and red fluorescent proteins. J. Phys. Chem. B 113:855‐859.
   Drobizhev, M., Makarov, N.S., Tillo, S.E., Hughes, T.E., and Rebane, A. 2011. Two‐photon absorption properties of fluorescent proteins. Nat. Methods 8:393‐399.
   Durr, N.J., Weisspfennig, C.T., Holfeld, B.A., and Ben‐Yakar, A. 2011. Maximum imaging depth of two‐photon autofluorescence microscopy in epithelial tissues. J. Biomed. Opt. 16:026008.
   Fitzpatrick, J.A. and Lillemeier, B.F. 2011. Fluorescence correlation spectroscopy: Linking molecular dynamics to biological function in vitro and in situ. Curr. Opin. Struct. Biol. 21:650‐660.
   Flusberg, B.A., Jung, J.C., Cocker, E.D., Anderson, E.P., and Schnitzer, M.J. 2005. In vivo brain imaging using a portable 3.9 gram two‐photon fluorescence microendoscope. Optics Lett. 30:2272‐2274.
   Friedman, R.S., Beemiller, P., Sorensen, C.M., Jacobelli, J., and Krummel, M.F. 2010. Real‐time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. J. Exp. Med. 207:2733‐2749.
   Gaus, K., Gratton, E., Kable, E.P., Jones, A.S., Gelissen, I., Kritharides, L., and Jessup, W. 2003. Visualizing lipid structure and raft domains in living cells with two‐photon microscopy. Proc. Natl. Acad. Sci. U.S.A. 100:15554‐15559.
   Göppert‐Mayer, M. 1931. Über Elementarakte mit zwei Quantensprüngen. Ann. Physik. 9:273‐294.
   Gordon, G.R., Iremonger, K.J., Kantevari, S., Ellis‐Davies, G.C., MacVicar, B.A., and Bains, J.S. 2009. Astrocyte‐mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391‐403.
   Hopt, A. and Neher, E. 2001. Highly nonlinear photodamage in two‐photon fluorescence microscopy. Biophysical J. 80:2029‐2036.
   Huber, D., Gutnisky, D.A., Peron, S., O'Connor, D.H., Wiegert, J.S., Tian, L., Oertner, T.G., Looger, L.L., and Svoboda, K. 2012. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473‐478.
   Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E.H. 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007‐1009.
   Imamura, R., Isaka, Y., Sandoval, R.M., Ori, A., Adamsky, S., Feinstein, E., Molitoris, B.A., and Takahara, S. 2010. Intravital two‐photon microscopy assessment of renal protection efficacy of siRNA for p53 in experimental rat kidney transplantation models. Cell Transplant. 19:1659‐1670.
   Kaiser, W. and Garrett, C.G.B. 1961. Two‐photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7:229‐231.
   Kantevari, S., Hoang, C.J., Ogrodnik, J., Egger, M., Niggli, E., and Ellis‐Davies, G.C. 2006. Synthesis and two‐photon photolysis of 6‐(ortho‐nitroveratryl)‐caged IP3 in living cells. Chembiochem 7:174‐180.
   Kantevari, S., Matsuzaki, M., Kanemoto, Y., Kasai, H., and Ellis‐Davies, G.C. 2010. Two‐color, two‐photon uncaging of glutamate and GABA. Nat. Methods 7:123‐125.
   Kim, S.A., Heinze, K.G., and Schwille, P. 2007. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4:963‐973.
   Levitt, J.A., Matthews, D.R., Ameer‐Beg, S.M., and Suhling, K. 2009. Fluorescence lifetime and polarization‐resolved imaging in cell biology. Curr. Opin. Biotechnol. 20:28‐36.
   Lipp, P., Egger, M., and Niggli, E. 2002. Spatial characteristics of sarcoplasmic reticulum Ca2+ release events triggered by L‐type Ca2+ current and Na+ current in guinea‐pig cardiac myocytes. J. Physiol. 542:383‐393.
   Llewellyn, M.E., Barretto, R.P., Delp, S.L., and Schnitzer, M.J. 2008. Minimally invasive high‐speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454:784‐788.
   Looney, M.R., Thornton, E.E., Sen, D., Lamm, W.J., Glenny, R.W., and Krummel, M.F. 2011. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods 8:91‐96.
   Mahou, P., Zimmerley, M., Loulier, K., Matho, K.S., Labroille, G., Morin, X., Supatto, W., Livet, J., Débarre, D., and Beaurepaire, E. 2012. Multicolor two‐photon tissue imaging by wavelength mixing. Nat. Methods 9:815‐818.
   Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R., and Webb, W.W. 1997. Measuring serotonin distribution in live cells with three‐photon excitation. Science 275:530‐532.
   Mao, S., Benninger, R.K., Yan, Y., Petchprayoon, C., Jackson, D., Easley, C.J., Piston, D.W., and Marriott, G. 2008. Optical lock‐in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94:4515‐4524.
   Matsuzaki, M., Ellis‐Davies, G.C., Nemoto, T., Miyashita, Y., Iino, M., and Kasai, H. 2001. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4:1086‐1092.
   Matsuzaki, M., Hayama, T., Kasai, H., and Ellis‐Davies, G.C. 2010. Two‐photon uncaging of gamma‐aminobutyric acid in intact brain tissue. Nat. Chem. Biol. 6:255‐257.
   Miller, M.J., Wei, S.H., Cahalan, M.D., and Parker, I. 2003. Autonomous T cell trafficking examined in vivo with intravital two‐photon microscopy. Proc. Natl. Acad. Sci. U.S.A. 100:2604‐2609.
   Mittmann, W., Wallace, D.J., Czubayko, U., Herb, J.T., Schaefer, A.T., Looger, L.L., Denk, W., and Kerr, J.N. 2011. Two‐photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat. Neurosci. 14:1089‐1093.
   Mower, A.F., Kwok, S., Yu, H., Majewska, A.K., Okamoto, K., Hayashi, Y., and Sur, M. 2011. Experience‐dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proc. Natl. Acad. Sci. U.S.A. 108:21241‐21246.
   Nishimura, N., Schaffer, C.B., Friedman, B., Tsai, P.S., Lyden, P.D., and Kleinfeld, D. 2006. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke. Nat. Methods 3:99‐108.
   Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D., and Kleinfeld, D. 2007. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. U.S.A. 104:365‐370.
   Noguchi, J., Nagaoka, A., Watanabe, S., Ellis‐Davies, G.C., Kitamura, K., Kano, M., Matsuzaki, M., and Kasai, H. 2011. In vivo two‐photon uncaging of glutamate revealing the structure‐function relationships of dendritic spines in the neocortex of adult mice. J. Physiol. 589:2447‐2457.
   O'Connor, D.H., Huber, D., and Svoboda, K. 2009. Reverse engineering the mouse brain. Nature 461:923‐929.
   Olivier, N., Luengo‐Oroz, M.A., Duloquin, L., Faure, E., Savy, T., Veilleux, I., Solinas, X., Débarre, D., Bourgine, P., Santos, A., Peyriéras, N., and Beaurepaire, E. 2010. Cell lineage reconstruction of early zebrafish embryos using label‐free nonlinear microscopy. Science 329:967‐971.
   Owen, D.M., Magenau, A., Majumdar, A., and Gaus, K. 2010. Imaging membrane lipid order in whole, living vertebrate organisms. Biophys. J. 99:L7‐L9.
   Patterson, G.H. and Piston, D.W. 2000. Photobleaching in two‐photon excitation microscopy. Biophys. J. 78:2159‐2162.
   Piyawattanametha, W., Cocker, E.D., Burns, L.D., Barretto, R.P., Jung, J.C., Ra, H., Solgaard, O., and Schnitzer, M.J. 2009. In vivo brain imaging using a portable 2.9 g two‐photon microscope based on a microelectromechanical systems scanning mirror. Opt. Lett. 34:2309‐2311.
   Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., and Betzig, E. 2011. Rapid three‐dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417‐423.
   Rickgauer, J.P. and Tank, D.W. 2009. Two‐photon excitation of channelrhodopsin‐2 at saturation. Proc. Natl. Acad. Sci. U.S.A. 106:15025‐15030.
   Ridgeway, W.K., Millar, D.P., and Williamson, J.R. 2012. Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 109:13614‐13619.
   Rocheleau, J.V., Head, W.S., Nicholson, W.E., Powers, A.C., and Piston, D.W. 2002. Pancreatic islet beta‐cells transiently metabolize pyruvate. J. Biol. Chem. 277:30914‐30920.
   Rocheleau, J.V., Head, W.S., and Piston, D.W. 2004. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J. Biol. Chem. 279:31780‐31787.
   Sanz‐Moreno, V., Gaggioli, C., Yeo, M., Albrengues, J., Wallberg, F., Viros, A., Hooper, S., Mitter, R., Féral, C.C., Cook, M., Larkin, J., Marais, R., Meneguzzi, G., Sahai, E., and Marshall, C.J. 2011. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20:229‐245.
   Schafer, Z.T., Grassian, A.R., Song, L., Jiang, Z., Gerhart‐Hines, Z., Irie, H.Y., Gao, S., Puigserver, P., and Brugge, J.S. 2009. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109‐113.
   Schaffer, C.B., Friedman, B., Nishimura, N., Schroeder, L.F., Tsai, P.S., Ebner, F.F., Lyden, P.D., and Kleinfeld, D. 2006. Two‐photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PloS Biol. 4:e22.
   Schummers, J., Yu, H., and Sur, M. 2008. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638‐1643.
   Skala, M.C., Riching, K.M., Gendron‐Fitzpatrick, A., Eickhoff, J., Eliceiri, K.W., White, J.G., and Ramanujam, N. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. U.S.A. 104:19494‐19499.
   Spiess, E., Bestvater, F., Heckel‐Pompey, A., Toth, K., Hacker, M., Stobrawa, G., Feurer, T., Wotzlaw, C., Berchner‐Pfannschmidt, U., Porwol, T., and Acker, H. 2005. Two‐photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J. Microsc. 217:200‐204.
   Squirrell, J.M., Wokosin, D.L., White, J.G., and Bavister, B.D. 1999. Long‐term two‐photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17:763‐767.
   Stringari, C., Cinquin, A., Cinquin, O., Digman, M.A., Donovan, P.J., and Gratton, E. 2011. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc. Natl. Acad. Sci. U.S.A. 108:13582‐13587.
   Supatto, W., Débarre, D., Moulia, B., Brouzés, E., Martin, J.L., Farge, E., and Beaurepaire, E. 2005. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. U.S.A. 102:1047‐1052.
   Theer, P. and Denk, W. 2006. On the fundamental imaging‐depth limit in two‐photon microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23:3139‐3149.
   Theer, P., Hasan, M.T., and Denk, W. 2003. Two‐photon imaging to a depth of 1000 micron in living brains by use of a Ti:Al2O3 regenerative amplifier. Optics Lett. 28:1022‐1024.
   Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M., and Fraser, S.E. 2011. Deep and fast live imaging with two‐photon scanned light‐sheet microscopy. Nat. Methods 8:757‐760.
   Verveer, P.J., Wouters, F.S., Reynolds, A.R., and Bastiaens, P.I. 2000. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290:1567‐1570.
   Victora, G.D., Schwickert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer‐Hermann, M., Dustin, M.L., and Nussenzweig, M.C. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592‐605.
   Wang, E., Sandoval, R.M., Campos, S.B., and Molitoris, B.A. 2010. Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio‐metric determination of glomerular filtration rate in the rat. Am. J. Physiol. Renal Physiol. 299:F1048‐F1055.
   Wilson, T. 2011. Resolution and optical sectioning in the confocal microscope. J. Microsc. 244:113‐121.
   Wokosin, D.L., Loughrey, C.M., and Smith, G.L. 2004. Characterization of a range of fura dyes with two‐photon excitation. Biophys. J. 86:1726‐1738.
   Wu, B., Chen, Y., and Müller, J.D. 2010. Heterospecies partition analysis reveals binding curve and stoichiometry of protein interactions in living cells. Proc. Natl. Acad. Sci. U.S.A. 107:4117‐4122.
   Xi, P., Andegeko, Y., Pestov, D., Lovozoy, V.V., and Dantus, M. 2009. Two‐photon imaging using adaptive phase compensated ultrashort laser pulses. J. Biomed. Opt. 14:014002.
   Xu, C. and Webb, W.W. 1996. Measurement of two‐photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B Opt. Phys. 13:481‐491.
PDF or HTML at Wiley Online Library