Super‐Resolution Microscopy and Single‐Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule

Saumya Saurabh1, Adam M. Perez2, Colin J. Comerci3, Lucy Shapiro4, W. E. Moerner1

1 Department of Chemistry, Stanford University, Stanford, California, 2 Department of Biology, Stanford University, Stanford, California, 3 Biophysics Program, Stanford University, Stanford, California, 4 Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, California
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 4.32
DOI:  10.1002/cpcb.21
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Visualization of dynamic protein structures in live cells is crucial for understanding the mechanisms governing biological processes. Fluorescence microscopy is a sensitive tool for this purpose. In order to image proteins in live bacteria using fluorescence microscopy, one typically genetically fuses the protein of interest to a photostable fluorescent tag. Several labeling schemes are available to accomplish this. Particularly, hybrid tags that combine a fluorescent or fluorogenic dye with a genetically encoded protein (such as enzymatic labels) have been used successfully in multiple cell types. However, their use in bacteria has been limited due to challenges imposed by a complex bacterial cell wall. Here, we describe the use of a genetically encoded photostable fluoromodule that can be targeted to cytosolic and membrane proteins in the Gram negative bacterium Caulobacter crescentus. Additionally, we summarize methods to use this fluoromodule for single protein imaging and super‐resolution microscopy using stimulated emission depletion. © 2017 by John Wiley & Sons, Inc.

Keywords: fluorogenic; fluoromodule; bacteria; photostable; STED; single‐protein tracking

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Cloning dL5 Gene to the Protein of Interest and Verification of the Strain
  • Basic Protocol 2: Growth and Labeling of Bacterial Cells for Imaging
  • Basic Protocol 3: Fluorescence Microscopy Set Up
  • Basic Protocol 4: STED Imaging of Live Bacterial Cells
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Cloning dL5 Gene to the Protein of Interest and Verification of the Strain

  Materials
  • pYFPC‐X (Thanbichler et al., )
  • QIAprep MiniPrep Kit (Qiagen)
  • Milli‐Q water
  • FastDigest Restriction Enzymes (Fermentas) including:
    • NcoI
    • NheI
  • Oligonucleotides (Integrated DNA Technologies): 5′ tcaccggtcggccaccatggcaCAGGCCGTCGTTACCCAAGAACC 3′ and 5′ atcccccgggctgcagctagttaGGAGAGGACGGTCAGCTGGG 3′ (bold letters in the oligo sequences highlight where the primer binds to dL5)
  • Phusion DNA Polymerase (New England Biolabs)
  • Agarose
  • TAE Buffer (see recipe)
  • QIAquick Gel Extraction kit (Qiagen)
  • Gibson Assembly Master Mix (New England Biolabs)
  • Ice
  • Competent E. coli DH5α cells
  • Luria Broth (see recipe)
  • Luria Broth + selective antibiotic plates
  • Liquid Caulobacter culture grown overnight to stationary phase
  • PYE (see recipe)
  • PYE + selective antibiotic plates
  • Appropriate antibiotics
  • 37°C incubator
  • Thermal cycler
  • 10‐ml culture tubes
  • Microcentrifuge tubes
  • PCR tubes
  • Sequencing facility
  • Electrophoresis machine
  • Gel imaging dock
  • Benchtop centrifuge
  • 0.1‐cm electroporation cuvettes
  • Electroporation machine

Basic Protocol 2: Growth and Labeling of Bacterial Cells for Imaging

  Materials
  • Caulobacter strains, frozen (see protocol 1; strains can also be requested from the Shapiro Laboratory)
  • PYE growth medium (see recipe)
  • Antibiotics
  • M2G
  • MG‐ester (the dye can be requested from Prof. Marcel Bruchez, Carnegie Mellon University or purchased from SharpEdge laboratories or Spectragenetics): additionally, the dye can also be synthesized based on previous work (Szent‐Gyorgyi et al., )
  • Ethanol
  • Acetic acid
  • Agarose pad
  • Paraffin wax, laboratory grade (Carolina Biological Supply Company)
  • 1.5‐ml microcentrifuge tubes
  • Nutator or shaker
  • Centrifuge
  • 1‐ml and 200‐μl pipettes
  • Coverslips
  • Glass slides

Basic Protocol 3: Fluorescence Microscopy Set Up

  Materials
  • Molten agarose
  • M2G (see recipe)
  • Caulobacter cells to be imaged
  • Paraffin wax, laboratory grade (Carolina Biological Supply Company)
  • VWR Square Glass Coverslips, no. 1.5 thickness, 22 mm
  • Hydrated chambers (any box with a flat surface for placing the coverslips and a wet paper towel)
  • 50‐ml beaker
  • Fisherfinest Premium Plain Glass Microscope Slides
  • Epi‐fluorescence inverted microscope (IX71, Olympus)Phase objective (UPlan FLN, 100×, 1.3 N.A., ph3, oil immersion, Olympus)
  • Super apochromat objective (UPlanSApo, 100×, 1.4 N.A. oil immersion, Olympus)
  • 638‐nm solid state laser (FiberTec II, Blue Sky Research)
  • EMCCD camera (iXon897 Ultra, Andor)
  • Motorized stage (M‐687 PILine, Physik Instrumente)
  • Circular polarizer
  • Dichroic mirror (ZT405/514/635rpc, Chroma Technologies)
  • Band pass emission filter (ET680/60m, Chroma Technologies)

Basic Protocol 4: STED Imaging of Live Bacterial Cells

  Materials
  • Single‐molecule resolution sample
  • Dye molecule (e.g., ATTO 647N NHS‐ester, Atto‐Tec)
  • Nanopure water
  • Poly‐L‐lysine‐coated coverslip
  • Mowiol mounting solution (see recipe)
  • Paper towels
  • Dual‐pulsed STED microscope, including:
    • Titanium‐sapphire mode‐locked oscillator (∼750 nm; 100 fs pulses at ∼80 MHz)
    • Dispersive elements (e.g., glass rods and polarization preserving fiber)
    • Polarizers
    • Vortex phase plate
    • Pulsed diode laser (635 nm; <100 psec pulses electronically triggered from oscillator)
    • Polarizers
    • Dichroic mirrors (substrate >3 mm thickness)
    • Resonant mirror
    • Quarter wave plate (zero‐order near 750 nm)
    • High‐magnification, high NA objective lens (100×; >1.3 NA)
    • 3D piezo nanopositioning stage
    • Pinhole
    • Emission filter
    • Lenses (achromatic doublets)
    • Mirrors (<λ/10 surface flatness)
    • Avalanche photo diode
    • Computer, FPGA, and software for image acquisition and analysis
  • Time‐gated CW STED Microscope (Leica TCS SP8, Leica Microsystems)
  • CW depletion laser (592 nm)
  • White light laser (80 MHz, 510 nm)
  • HyD detector (operating in photon counting mode)
  • High‐magnification, high NA objective lens (100×; 1.4 NA)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., … Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. doi: 10.1126/science.1127344.
  Briegel, A., Dias, D. P., Li, Z., Jensen, R. B., Frangakis, A. S., & Jensen, G. J. (2006). Multiple large filament bundles observed in caulobacter crescentus by electron cryotomography. Molecular Microbiology, 62, 5–14. doi: 10.1111/j.1365‐2958.2006.05355.x.
  Bruchez, M. P. (2015). Dark dyes‐bright complexes: Fluorogenic protein labeling. Current Opinion in Chemical Biology, 27, 18–23. doi: 10.1016/j.cbpa.2015.05.014.
  Donnert, G., Eggeling, C., & Hell, S. W. (2009). Triplet‐relaxation microscopy with bunched pulsed excitation. Photochemical & Photobiological Sciences, 8, 481–485. doi: 10.1039/b903357m.
  Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Luehrmann, R. … Hell, S. W. (2006). Macromolecular‐scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 103, 11440–11445. doi: 10.1073/pnas.0604965103.
  Gahlmann, A., & Moerner, W. E. (2014). Exploring bacterial cell biology with single‐molecule tracking and super‐resolution imaging. Nature Reviews Microbiology, 12, 9–22. doi: 10.1038/nrmicro3154.
  Galiani, S., Harke, B., Vicidomini, G., Lignani, G., Benfenati, F., Diaspro, A., & Bianchini, P. (2012). Strategies to maximize the performance of a STED microscope. Optics Express, 20, 7362–7374. doi: 10.1364/OE.20.007362.
  Griffin, B. A., Adams, S. R., & Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272. doi: 10.1126/science.281.5374.269.
  Harlow, E., & Lane, D. (2008). Antibodies: A laboratory manual. New York: Cold Spring Harbor Press.
  He, J., Wang, Y., Missinato, M. A., Onuoha, E., Perkins, L. A., Watkins, S. C. … Bruchez, M. P. (2016). A genetically targetable near‐infrared photosensitizer. Nature Methods, 13, 263–268. doi: 10.1038/nmeth.3735.
  Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated‐emission‐depletion fluorescence microscopy. Optics Letters, 19, 780–782. doi: 10.1364/OL.19.000780.
  Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91, 4258–4272. doi: 10.1529/biophysj.106.091116.
  Jennings, P. C., Cox, G. C., Monahan, L. G., & Harry, E. J. (2011). Super‐resolution imaging of the bacterial cytokinetic protein FtsZ. Micron, 42, 336–341. doi: 10.1016/j.micron.2010.09.003.
  Keppler, A., Kindermann, M., Gendreizig, S., Pick, H., Vogel, H., & Johnsson, K. (2004). Labeling of fusion proteins of O6‐alkylguanine‐DNA alkyltransferase with small molecules in vivo and in vitro. Methods, 32, 437–444. doi: 10.1016/j.ymeth.2003.10.007.
  Klar, T. A., Jakobs, S., Dyba, M., Egner, A., & Hell, S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206–8210. doi: 10.1073/pnas.97.15.8206.
  Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T., & Moerner, W. E. (2012). STED Microscopy with optimized labeling density reveals 9‐fold arrangement of a centriole protein. Biophysical Journal, 102, 2926–2935. doi: 10.1016/j.bpj.2012.05.015.
  Lee, Y. L., Sante, J., Comerci, C. J., Cyge, B., Menezes, L. F., Li, F. Q. … Stearns, T. (2014). Cby1 promotes Ahi1 recruitment to a ring‐shaped domain at the centriole‐cilium interface and facilitates proper cilium formation and function. Molecular Biology of the Cell, 25, 2919–2933. doi: 10.1091/mbc.E14‐02‐0735.
  Los, G. V., & Wood, K. (2007). The HaloTag: A novel technology for cell imaging and protein analysis. Methods in Molecular Biology, 356, 195–208.
  Magenau, A. J. D., Saurabh, S., Andreko, S. K., Telmer, C. A., Schmidt, B. F., Waggoner, A. S., & Bruchez, M. P. (2015). Genetically targeted fluorogenic macromolecules for subcellular imaging and cellular perturbation. Biomaterials, 66, 1–8. doi: 10.1016/j.biomaterials.2015.07.002.
  Moerner, W. E. (2007). New directions in single‐molecule imaging and analysis. Proceedings of the National Academy of Sciences of the United States of America, 104, 12596–12602. doi: 10.1073/pnas.0610081104.
  Peterman, E. J. G., Brasselet, S., & Moerner, W. E. (1999). The fluorescence dynamics of single molecules of green fluorescent protein. The Journal of Physical Chemistry. A, 103, 10553–10560. doi: 10.1021/jp991968o.
  Ptacin, J. L., Gahlmann, A., Bowman, G. R., Perez, A. M., von Diezmann, A. R. S., Eckart, M. R., … Shapiro, L. (2014). Bacterial scaffold directs pole‐specific centromere segregation. Proceedings of the National Academy of Sciences of the United States of America, 111, E2046‐E2055. doi: 10.1073/pnas.1405188111.
  Reimold, C., Defeu Soufo, H. J., Dempwolff, F., & Graumann, P. L. (2013). Motion of variable‐length MreB filaments at the bacterial cell membrane influences cell morphology. Molecular Biology of the Cell, 24, 2340–2349. doi: 10.1091/mbc.E12‐10‐0728.
  Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–796. doi: 10.1038/nmeth929.
  Saurabh, S., Beck, L. E., Maji, S., Baty, C. J., Wang, Y., Yan, Q … Bruchez, M. P. (2014). Multiplexed modular genetic targeting of quantum dots. ACS Nano, 8, 11138–11146. doi: 10.1021/nn5044367.
  Saurabh, S., & Bruchez, M. P. (2014). Targeting dyes for biology. In A. Cambi, & D. S. Lidke (Eds.), Cell membrane nanodomains: From biochemistry to nanoscopy (pp. 341). CRC Press.
  Saurabh, S., Perez, A. M., Comerci, C. J., Shapiro, L., & Moerner, W. E. (2016). Super‐resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. Journal of the American Chemical Society, 138, 10398–10401. doi: 10.1021/jacs.6b05943.
  Saurabh, S., Zhang, M., Mann, V. R., Costello, A. M., & Bruchez, M. P. (2015). Kinetically tunable photostability of fluorogen activating peptide‐fluorogen complexes. Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, 16, 2974–2980. doi: 10.1002/cphc.201500587.
  Shapiro, L., McAdams, H. H., & Losick, R. (2009). Why and how bacteria localize proteins. Science, 326, 1225–1228. doi: 10.1126/science.1175685.
  Slovak, P. M., Wadhams, G. H., & Armitage, J. P. (2005). Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. Journal of Bacteriology, 187, 54–64. doi: 10.1128/JB.187.1.54‐64.2005.
  Swulius, M. T., Chen, S., Ding, H. J., Li, Z., Briegel, A., Pilhofer, M. … Jensen, G. J. (2011). Long helical filaments are not seen encircling cells in electron cryotomograms of rod‐shaped bacteria. Biochemical and Biophysical Research Communications, 407, 650–655. doi: 10.1016/j.bbrc.2011.03.062.
  Szent‐Gyorgyi, C., Schmidt, B. F., Creeger, Y., Fisher, G. W., Zakel, K. L., Adler, S. … Waggoner, A. (2008). Fluorogen‐activating single‐chain antibodies for imaging cell surface proteins. Nature Biotechnology, 26, 235–240. doi: 10.1038/nbt1368.
  Thanbichler, M., Iniesta, A. A., & Shapiro, L. (2007). A comprehensive set of plasmids for vanillate‐ and xylose‐inducible gene expression in Caulobacter crescentus. Nucleic Acids Research, 35, e137. doi: 10.1093/nar/gkm818.
  Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544. doi: 10.1146/annurev.biochem.67.1.509.
  Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M. … Hell, S. W. (2011). Sharper low‐power STED nanoscopy by time gating. Nature Methods, 8, 571. doi: 10.1038/nmeth.1624.
  Wu, Y., Wu, X., Toro, L., & Stefani, E. (2015). Resonant‐scanning dual‐color STED microscopy with ultrafast photon counting: A concise guide. Methods, 88, 48–56. doi: 10.1016/j.ymeth.2015.06.019.
  Yan, Q., & Bruchez, M. P. (2015). Advances in chemical labeling of proteins in living cells. Cell and Tissue Research, 360, 179–194. doi: 10.1007/s00441‐015‐2145‐4.
  Yan, Q., Schmidt, B. F., Perkins, L. A., Naganbabu, M., Saurabh, S., Andreko, S. K., & Bruchez, M. P. (2015). Near‐instant surface‐selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins. Organic & Biomolecular Chemistry, 13, 2078–2086. doi: 10.1039/C4OB02309A.
  Zhang, M., Chakraborty, S. K., Sampath, P., Rojas, J. J., Hou, W., Saurabh, S. … Waggoner, A. S. (2015). Fluoromodule‐based reporter/probes designed for in vivo fluorescence imaging. The Journal of Clinical Investigation, 125, 3915–3927. doi: 10.1172/JCI81086.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library