Determining the Topology of an Integral Membrane Protein

Neil Green1, Hong Fang1, Kai‐Uwe Kalies2, Victor Canfield3

1 Vanderbilt University School of Medicine, Nashville, Tennessee, 2 Max Delbruck Center for Molecular Medicine, Berlin, 3 Pennsylvania State University College of Medicine, Hershey, Pennsylvania
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 5.2
DOI:  10.1002/0471143030.cb0502s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

A variety of methods have been developed for assigning the aqueous domains of integral membrane proteins to either side of a biological membrane. Once the sequence of a protein is known from its DNA sequence it is possible to study the topology of the protein. This unit provides protocols in which the water‐soluble domains can be tested for their accessibility to reagents added to membranes with a defined orientation. Tagging of hydrophilic regions of the protein with different epitopes and probing of their orientation with respect to the membrane is also described. Finally, a procedure for fusion of a reporter enzyme to truncated fragments of the protein is provided. The fusion protein is used as a sensor of sequence disposition relative to the membrane.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Protease Digestion
  • Basic Protocol 2: Immunofluorescence Staining
  • Support Protocol 1: Epitope Tagging
  • Basic Protocol 3: Reporter Gene Fusions
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Protease Digestion

  Materials
  • Canine pancreatic microsomal membranes (see unit 11.4)
  • Magnesium/sucrose/BSA (MSB) buffer (see recipe)
  • 20% (w/v) Triton X‐100
  • 10 mg/ml proteinase K (see recipe)
  • 100% (w/v) trichloroacetic acid (TCA)(see recipe)
  • recipeSDS sample buffer( appendix 2A)
  • Antibodies directed against a series of peptides corresponding to specific hydrophilic regions of the target protein
  • Control antibodies directed against a luminal protein or a luminal domain of a membrane protein in the membrane system to be analyzed
  • Additional reagents and equipment for preparing canine pancreatic microsomes (unit 11.4), separating proteins by SDS‐PAGE (unit 6.1), and detecting proteins by immunoblotting (unit 6.2)

Basic Protocol 2: Immunofluorescence Staining

  Materials
  • HEK 293 cells (ATCC #CRL 1573)
  • 4% (w/v) paraformaldehyde (see recipe)
  • Nonidet P‐40/goat serum/BSA (NGB) solution (see recipe)
  • Anti‐HA mouse monoclonal antibody 12CA5 (Boehringer Mannheim)
  • Rhodamine‐conjugated rabbit anti‐mouse immunoglobulin G (IgG)
  • DMEM/FBS/HEPES (DFH) solution (see recipe)
  • Fluoromount G mounting medium (Fisher)
  • 6‐well tissue culture plates
  • Glass coverslips, 22‐mm diameter
  • Additional reagents and equipment for immunofluorescence staining of fixed mammalian cells (unit 4.3), epifluorescence (unit 4.2) or confocal laser microscopy, and growing cultured mammalian cells (unit 1.1)

Support Protocol 1: Epitope Tagging

  Materials
  • TE buffer ( appendix 2A)
  • Plasmid DNA encoding the protein of interest
  • E. coli cells to be transformed
  • Additional reagents and equipment for synthesizing oligonucleotides ( appendix 3A), ligating DNA ( appendix 3A), transforming E. coli( appendix 3A), isolating plasmid DNA from E. coli ( appendix 3A), identifying plasmids by restriction endonuclease digestion ( appendix 3A), and sequencing oligonucleotides ( appendix 3A)

Basic Protocol 3: Reporter Gene Fusions

  Materials
  • Reporter plasmid (Fig. ): pA189invHD (available from Neil Green, Vanderbilt University)
  • S. cerevisia estrain FC2‐12B (MATα trp1‐1 leu2‐1 ura3‐52 his4‐401 HOL1‐1 can1‐1; available from Neil Green, Vanderbilt University)
  • SD +HIS agar plates (see recipe)
  • SD +HOL agar plates (see recipe)
  • Thermocycler
  • Additional reagents and equipment for the polymerase chain reaction (PCR; appendix 3A), agarose gel electrophoresis ( appendix 3A), restriction endonuclease digestion ( appendix 3A), and transformation of E. coli and S. cerevisiae ( appendix 3A).
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bennetzen, J.L. and Hall, B.D. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem 257:3018‐3025.
   Bole, D.G., Hendershot, L.M., and Kearney, J.F. 1986. Posttranslational association of immunoglobulin heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol 102:1558‐1566.
   Bonnerot, C., Marks, M.S., Cosson, P., Robertson, E.J., Bikoff, E.K., Germain, R.N., and Bonifacino, J.S. 1994. Association with BiP and aggregation of class II MHC molecules synthesized in the absence of invariant chain. EMBO J. 13:934‐944.
   Canfield, V.A. and Levenson, R. 1993. Transmembrane organization of the Na,K‐ATPase determined by epitope addition. Biochemistry 32:13782‐13786.
   Canfield, V.A., Norbeck, L., and Levenson, R. 1996. Localization of cytoplasmic and extracellular domains of Na,K‐ATPase by epitope tag insertion. Biochemistry 35:14165‐14172.
   Carrasco, N., Herzlinger, D., Danho, W., and Kaback, H.R. 1986. Preparation of monoclonal antibodies and site‐directed polyclonal antibodies against the lac permease of Escherichia coli. Methods Enzymol. 125:453‐467.
   Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. 1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618‐624.
   Doan, A., Thinakaran, G., Borchelt, D.R., Slunt, H.H., Ratovitsky, R., Podlisny, M., Selkoe, D.J., Seeger, M., Gandy, S.E., Price, D.L., and Sisodia, S.S. 1996. Protein topology of presenilin 1. Neuron 17:1023‐1030.
   Donahue, T.F., Farabaugh, P.J., and Fink, G.R. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47‐59.
   Elgersma, Y., Kwast, L., van den Berg, M., Snyder, W.B., Distel, B., Subramani, S., and Tabak, H.F. 1997. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J. 16:7326‐7341.
   Engelman, D., Steitz, T., and Goldman, A. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Chem 15:321‐353.
   Evan, G.I., Lewis, G.K., Ramsay, G., and Bishop, J.M. 1985. Isolation of monoclonal antibodies specific for human c‐myc proto‐oncogene product. Mol. Cell. Biol 5:3610‐3616.
   Finer‐Moore, J. and Stroud, R. 1984. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 81:155‐159.
   Friedlander, M. and Blobel, G. 1985. Bovine opsin has more than one signal sequence. Nature 318:338‐343.
   Froshauer, S., Green, N., Boyd, D., McGovern, K., and Beckwith, J. 1988. Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J. Mol. Biol. 200:501‐511.
   Fujiki, Y., Hubbard, A.L., Fowler, S., and Lazarow, P.B. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment. Application to endoplasmic reticulum. J. Cell Biol. 93:97‐102.
   Gerber, G., Gray, C., Wildenauer, D., and Khorana, G. 1977. Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc. Natl. Acad. Sci. U.S.A. 81:155‐159.
   Gething, M.‐J., McCammon, K., and Sambrook, J. 1986. Expression of wild type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport. Cell 46:939‐950.
   Graham, T.R., Seeger, M., Payne, G., Mackay, V.L., and Emr, S.D. 1994. Clathrin‐dependent localization of α1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J. Cell Biol. 127:67‐678.
   Green, N. and Walter, P. 1992. C‐terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum ofSaccharomyces cerevisiae. Mol. Cell. Biol. 12:276‐282.
   Haas, I.G. and Wabl, M. 1984. Immunoglobulin heavy chain binding protein. Nature 306:387‐389.
   Hartmann, E., Rapoport, T.A., and Lodish, H.F. 1989. Predicting the orientation of eukaryotic membrane‐spanning proteins. Proc. Natl. Acad. Sci. U.S.A. 86:5786‐5790.
   Hartmann, E., Sommer, T., Prehn, S., Gorlich, D., Jentsch, S., and Rapoport, T.A. 1994. Evolutionary conservation of components of the protein translocation complex. Nature 367:654‐657.
   Hegde, R.S. and Lingappa, V.R. 1997. Membrane protein biogenesis: Regulated complexity at the endoplasmic reticulum. Cell 91:575‐582.
   Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L., and Conlon, P.J. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6:1204‐1210.
   Kalies, K.‐U. and Hartmann, E. 1996. Membrane topology of the 12‐ and the 25‐kDa subunits of the mammalian signal peptidase complex. J. Biol. Chem. 271:3925‐3929.
   Kalish, J.E., Theda, C., Morrell, J.C., Berg, J.M., and Gould, S.J. 1995. Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc‐binding integral membrane protein of the peroxisome. Mol. Cell. Biol. 15:6406‐6419.
   Kreis, T.E. 1986. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 5:931‐941.
   Kreis, T.E. and Lodish, H.F. 1986. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46:929‐937.
   Kurihara, T. and Silver, P. 1993. Suppression of sec63 mutation identifies a novel component of the yeast endoplasmic reticulum translocation apparatus. Mol. Biol. Cell 4:919‐930.
   Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol 157:105‐132.
   Lai, C.‐C., Hong, K., Kinnell, M., Chalfie, M., and Driscoll, M. 1996. Sequence and transmembrane topology of MEC‐4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133:1071‐1081.
   Li, J.‐M. and Shore, G.C. 1992. Reversal of the orientation of an integral protein of the mitochondrial outer membrane. Science 256:1815‐1817.
   Lim, P.S., Jensen, A.B., Cowsert, L., Nakai, Y., Lim, L.Y., Jin, X.W., and Sundberg, J.P. 1990. Distribution and specific identification of papillomavirus major capsid protein epitopes by immunocytochemistry and epitope scanning of synthetic peptides. J. Infect. Dis. 162:1263‐1269.
   Manoil, C. and Beckwith, J. 1986. A genetic approach to analyzing membrane protein topology. Science 233:1403‐1408.
   Mize, N.K., Andrews, D.W., and Lingappa, V.R. 1986. A stop transfer sequence recognizes receptors for nascent chain translocation across the endoplasmic reticulum membrane. Cell 47:711‐719.
   Mullins, C., Lu, Y., Campbell, A., Fang, H., and Green, N. 1995. A mutation affecting signal peptidase inhibits degradation of an abnormal membrane protein in Saccharomyces cerevisiae. J. Biol. Chem. 270:17139‐17147.
   Nilsson, T., Jackson, M.R., and Peterson, P.A. 1989. Short cytoplasmic sequences serve as retention signal for transmembrane proteins in the endoplasmic reticulum. Cell 58:707‐718.
   Russel, M. and Model, P. 1982. Filamentous phage pre‐coat is an integral membrane protein: Analysis by a new method of membrane preparation. Cell 28:177‐184.
   Seckler, R., Moroy, T., Wright, J.K., and Overath, P. 1986. Anti‐peptide antibodies and proteases as structural probes for the lactose/H+transporter of Escherichia coli: A loop around amino acid residue 130 faces the cytoplasmic side of the membrane. Biochemistry 25:2403‐2409.
   Sengstag, C., Stirling, C., Schekman, R., and Rine, J. 1990. Genetic and biochemical evaluation of eukaryotic membrane protein topology: Multiple transmembrane domains of Saccharomyces cerevisiae 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase. Mol. Cell. Biol. 10:672‐680.
   Skach, W.R., Shi, L., Dalayag, M.C., Frigeri, A., Lingappa, V.R., and Verkman, A.S. 1994. Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum. J. Cell Biol. 125:803‐815.
   Steck, T.L. and Yu, J. 1973. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J. Supramol. Struct. 1:220‐248.
   Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A., and Subramani, S. 1991. A novel, cleavable peroxisomal targeting signal at the amino‐terminus of the rat 3‐ketoacyl‐CoA thiolase. EMBO J. 10:3255‐3262.
   Taussig, R. and Carlson, M. 1983. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucl. Acids Res. 11:1943‐1954.
   von Heijne, G. 1984. Analysis of the distribution of charged residues in the N‐terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 3:2315‐2318.
   Walter, P. and Blobel, G. 1983. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96:84‐93.
   Wilson, I.A., Niman, H.L., Houghten, R.A., Cherenson, A.R., Connolly, M.L., and Lerner, R.A. 1984. The structure of an antigenic determinant in a protein. Cell 37:767‐778.
   Xia, D., Yu, C.‐A., Kim, H., Xia, J.‐Z., Kachurin, A.M., Zhang, L., Yu, L., and Deisenhofer, J. 1997. Crystal structure of the cytochrome bc1complex from bovine heart mitochondria. Science 277:60‐66.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library