Purification and Analysis of Thrombospondin‐1

Karen O. Yee1, Mark Duquette1, Anna Ludlow1, Jack Lawler1

1 Beth Israel Deaconess Medical Center, Boston, Massachusetts
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 10.10
DOI:  10.1002/0471143030.cb1010s17
Online Posting Date:  February, 2003
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Thromboapondin 1 (TSP‐1) is a trimeric matricellular protein that is expressed by many cells. It contains several different domains that allow it to participate in cell adhesion, cell migration, and cell signaling. Recently TSP‐1 has been shown to activate transforming growth factor β (TGF‐β) and to inhibit both angiogenesis and tumor growth. This unit contains protocols for the purification of TSP‐1 from platelet‐rich plasma and the purification of TSP‐1 proteolytic fragments.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Isolation of Thrombospondin‐1 from Human Platelets
  • Basic Protocol 2: Isolation of Proteolytic Fragments of TSP‐1
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation of Thrombospondin‐1 from Human Platelets

  Materials
  • Platelet‐rich plasma
  • Baenziger A buffer (see recipe)
  • Baenziger B buffer (see recipe)
  • 1 M CaCl 2 ( appendix 2A)
  • 1 N NaOH (optional)
  • Thrombin
  • Diisopropyl fluorophosphate (DFP)
  • Heparin‐Sepharose CL‐6B (Amersham Pharmacia Biotech)
  • 0.15, 0.25, 0.55, and 2.0 M heparin‐Sepharose column buffers (see recipe)
  • Anti‐vitronectin immunoaffinity column: prepare in advance according to manufacturer's instructions using an Affi‐Gel Hz Immunoaffinity kit (Bio‐Rad) and anti–human vitronectin antibody (e.g., GIBCO/BRL)
  • Ammonium sulfate
  • 10% and 20% (w/v) sucrose gradient solutions (see recipe)
  • 15‐ and 50‐ml centrifuge tubes (conical bottom preferred)
  • Preparative centrifuge (Sorvall RC‐B3 or equivalent) and rotor (H4000 or equivalent)
  • 40‐ml Oak Ridge centrifuge tubes
  • High‐speed centrifuge (Beckman J2‐MC or equivalent) and rotor (JA‐20 or equivalent)
  • 1 × 12–cm chromatography column
  • Fraction collector and appropriate tubes
  • Spectrophotometer set at 280 nm
  • Gradient maker
  • 14‐ml ultracentrifuge tubes
  • Ultracentrifuge (Beckman LM‐80 or equivalent) and rotor (SW 41Ti or equivalent)
NOTE: Platelets are temperature sensitive and activated by untreated glass surfaces; therefore, they should be handled at room temperature in plasticware, and centrifuges and buffers should be warmed to room temperature before use.

Basic Protocol 2: Isolation of Proteolytic Fragments of TSP‐1

  Materials
  • TSP‐1 (see protocol 1)
  • TBS (see recipe) containing 2 mM CaCl 2
  • 0.5 M EDTA ( appendix 2A)
  • Chymotrypsin
  • Diisopropyl fluorophosphate (DFP)
  • 0.8 × 3–cm column of immobilized soybean trypsin inhibitor (Pierce)
  • 0.8 × 3–cm column of heparin‐Sepharose CL‐6B (Amersham Pharmacia Biotech)
  • 0.15, 0.25, and 0.55 M heparin‐Sepharose column buffers (see recipe)
  • Centriplus centrifugal filter device (3000‐Da cutoff; Millipore)
  • 1.3 × 30–cm column of Sephadex G‐200
  • Fraction collector
  • Spectrophotometer set at 280 nm
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abdelouahed, M., Ludlow, A., Brunner, G. and Lawler, J. 2000. Activation of platelet‐transforming growth factor β‐1 in the absence of thrombospondin‐1. J. Biol. Chem. 275:17933‐17936.
   Adams, J. 2001. Thrombospondins: Multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol. 17:25‐51.
   Barazi, H.O., Zhou, L., Smyth Templeton, N., Krutzsch, H.C., and Roberts, D.D. 2002. Identification of heat shock protein 60 as a molecular mediator of α3β1 integrin activation. Cancer Res. 62:1541‐1548.
   Bein, K. and Simons, M. 2000. Thrombospondin‐1 type 1 repeats interact with matrix metalloproteinase 2: Regulation of metalloproteinase activity. J. Biol. Chem. 275:32167‐73.
   Benaud, C., Dickson, R.B. and Thompson, E.W. 1998. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res. Treatment 50:97‐116.
   Bornstein, P. 1995. Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J. Cell Biol. 130:503‐506.
   Brown, L.F., Guidi, A.J., Schnitt, S.J., Water, L.V.D., Iruela‐Arispe, M.L., Yeo, T.‐K., Tognazzi, K., and Dvorak, H.F. 1999. Vascular stroma formation in carcinoma in situ, invasive carcinoma and metastatic carcinoma of the breast. Clin. Cancer Res. 5:1041‐1056.
   Chandrasekaran, S., Guo, N.‐H., Rodrigues, R.G., Kaiser, J., and Roberts, D.D. 1999. Pro‐adhesive and chemotactic activities of thrombospondin‐1 for breast carcinoma cells are mediated by a3b1 integrin and regulated by insulin‐like growth factor 1 and CD98. J. Biol. Chem. 274:11408‐11416.
   Chandrasekaran, L., He, C.H., Al‐Barazi, H., Krutzsch, H.C., Iruela‐Arispe, M.L., and Roberts, D.D. 2000. Cell‐contact‐dependent activation of α3β1 integin modulates endothelial cell responses to thrombospondin‐1. Mol. Biol. Cell 11:2885‐2900.
   Chen, H., Herndon, M.E., and Lawler, J. 2000. The cell biology of thrombospondin‐1. Matrix Biol. 19:597‐614.
   Chung, J., Gao, A., and Frazier, W.A. 1997. Thrombospondin acts via integrin associated protein to activate the platelet integrin αIIbβ3. J. Biol. Chem. 272:14740‐14746.
   Clezardin, P., Lawler, J., Amiral, J., Quentin, G., and Delmas, P. 1997. Identification of cell adhesive active sites in the N‐terminal domain of thrombospondin‐1. Biochem. J. 321:819‐827.
   Crawford, S.E., Stellmach, V., Murphy‐Ullrich, J.E., Ribeiro, S.M.F., Lawler, J., Hynes, R.O., Boivin, G.P. and Bouck, N. 1998. Thrombospondin‐1 is a major activator of TGF‐β1 in vivo. Cell 93:1159‐1170.
   Crombie, R. and Silverstein, R. 1998. Lysomsomal integral membrane protein II binds thrombospondin‐1. J. Biol. Chem. 273:4855‐4863.
   Dawson, DW., Pearce, S.F.A., Zhong, R., Silverstein, R.L., Frazier, W.A., and Bouck, N.P. 1997. CD36 mediates the in vitro inhibitory effects of thrombospondin‐1 on endothelial cells. J. Cell Biol. 138:707‐717.
   Dawson, D.W., Volpert, O.V., Pearce, S.F.A., Schneider, A.J., Silverstein, R.L., Henkin, J., and Bouck, N. 1999. Three distinct d‐amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin‐1 type 1 repeat. Molec. Pharmacol. 55:332‐338.
   Dollery, C.M., McEwan, J.R., and Henney, A.M. 1995. Matrix metalloproteinases and cardiovascular disease. Circ. Res. 77:863‐868.
   Erwig, L.P., Gordon, S., Walsh, G.M., and Rees, A.J. 1999. Previous uptake of apoptotic neutrophils or ligation of integrin receptors downmodulates the ability of macrophages to ingest apoptotic neutrophils. Blood 93:1406‐1412.
   Febbraio, M., Hajjar, D.P., and Silverstein, R.L. 2001. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108:785‐791.
   Frazier, W.A., Gao, A., Dimitry, J., Chung, J., Brown, E.J., Lindberg, F.P., and Linder, M.E. 1999. The thrombospondin receptor integrin‐associated protein (CD47) functionally couples to heterotrimeric Gi. J. Biol. Chem. 274:8554‐8560.
   Gao, A.‐G., Lindberg, F.P., Dimitry, J.M., Brown, E.J., and Frazier, W.A. 1996. Thrombospondin modulates αvβ3 function through integrin‐associated protein. J. Cell Biol. 135:533‐544.
   Good, D.J., Polverini, P.J., Rastinejad, F., Le Beau, M.M., Lemons, R.S., Frazier, W.A., and Bouck, N. 1990. A tumor suppressor‐dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. U.S.A. 87:6624‐6628.
   Grainger, D.J. and Frow, E.K. 2000. Thrombospondin‐1 does not activate transforming growth factor β1 in a chemically defined system or in smooth muscle cell cultures. Biochem J. 350:291‐298.
   Guo, N.‐H., Krutzsch, H.C., Inman, J.K., and Roberts, D.D. 1997. Thrombospondin‐1 and type 1 repeat peptides of thrombospondin‐1 specifically induce apoptosis of endothelial cells. Cancer Res. 57:1735‐1742.
   Guo, N.‐H., Smyth Templeton, N., Al‐Barazi, H., Cashel, J., Sipes, J.M., Krutzsch, H.C., and Roberts, D.D. 2000. Thrombospondin‐1 promotes α3β1 integrin‐mediated adhesion and neurite‐like outgrowth and inhibits proliferation of small cell lung carcinoma cells. Cancer Res. 60:457‐466.
   Harpel, J.G., Shultz‐Cherry, S., Murphy‐Ullrich, J.E., and Rifkin, D.B. 2001. Tamoxifen and estrogen effects on TGF‐βformation: Role of thrombospondin‐1, αvβ3, and integrin‐associated protein. Biochem. Biophys. Res. Comm. 284:11‐14.
   Huang, M.‐M., Bolen, J.B., Barnwell, J.W., Shattil, S., and Brugge, J.S. 1991. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn and Yes protein‐tyrosine kinases in human platelets. Proc. Natl. Acad. Sci. U.S.A. 88:7844‐7848.
   Hynes, R.O. 1992. Integrins: Versatility, modulation and signaling in cell adhesion. Cell 69:11‐25.
   Iruela‐Arispe, L., Bornstein, P., and Sage, H. 1991. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 88:5026‐5030.
   Iruela‐Arispe, M.L., Lombardo, B., Krutzsch, H.C., Lawler, J., and Roberts, D.D. 1999. Inhibition of angiogenesis by thrombospondin‐1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100:1423‐1431.
   Jiménez, B., Volpert, O.V., Crawford, S.E., Febbraio, M., Silverstein, R.L., and Bouck, N. 2000. Signals leading to apoptosis‐dependent inhibition of neovascularization by thrombospondin‐1. Nature Med. 6:41‐48.
   Kaul, D.K., Tsai, H.M., Liu, X.D., Nakada, M.T., Nagel, R.L., and Coller, B.S. 2000. Monoclonal antibodies to αvβ3 (7E3 and LM609) inhibit sickle red blood cell‐endothelium interactions induced by platelet‐activating factor. Blood 95:368‐374.
   Krutzsch, H.C., Choe, B.J., Sipes, J.M., Guo, N.‐H., and Roberts, D.D. 1999. Identification of an α3β1 integrin recognition sequence in thrombospondin‐1. J. Biol. Chem. 274:24080‐24086.
   Lawler, J. 2002. Thrombospondin‐1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med. 6:1‐12.
   Lawler, J. and Hynes, R.O. 1986. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium‐binding sites and homologies with several different proteins. J. Cell Biol. 103:1635‐1648.
   Lawler, J., Sunday, M., Thibert, V., Duquette, M., George, E.L., Rayburn, H., and Hynes, R.O. 1998. Thrombospondin‐1 is required for normal pulmonary homeostasis and its absence causes pneumonia. J. Clin. Invest. 101:982‐992.
   Lee, J., Weber, M., Mejia, S., Bone, E., Watson, P., and Orr, W. 2001. A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA‐MB‐231 human breast cancer cells in BalbC nu/nu mice. Eur. J. Cancer 37:106‐113.
   Markowitz, S.D. and Roberts, A.B. 1996. Tumor suppressor activity of the TGF‐βpathway in human cancers. Cytokine Growth Factor Rev. 7:93‐102.
   Martorana, A.M., Zheng, G., Crowe, T.C., O'Grady, R.L., and Lyons, J.G. 1998. Epithelial cells up‐regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial‐mesenchymal transition. Cancer Res. 58:4970‐4979.
   Merle, B., Malaval, L., Lawler, J., Delmas, P., and Clezardin, P. 1997. Decorin inhibits cell attachment to thrombospondin‐1 by binding to a KKTR‐dependent cell adhesive site present within the N‐terminal domain of thrombospondin‐1. J. Cell. Biochem. 67:75‐83.
   Miao, W.‐M., Seng, W.L., Duquette, M., Lawler, P., Laus, C., and Lawler, J. 2001. Thrombospondin‐1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor β dependent and independent mechanisms. Cancer Res. 61:7830‐7839.
   Munger, J.S., Harpel, J.G., Gleizes, P.‐E., Mazzieri, R., Nunes, I., and Rifkin, D.B. 1997. Latent transforming growth factor‐β: Structural features and mechanisms of activation. Kidney Int. 51:1376‐1382.
   Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J.D., Dalton, S.L., Wu, J., Pittet, J.‐F., Kaminski, N., Garat, C., Matthay, M.A. et al. 1999. The integrin αvβ6 binds and activates latent TGFβ‐1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319‐328.
   Murphy‐Ullrich, J.E., Schultz‐Cherry, S., and Höök, M. 1992. Transforming growth factor‐βcomplexes with thrombospondin. Mol. Biol. Cell 3:181‐188.
   Nielsen, B.S., Sehested, M., Kjeldsen, L., Borregaard, N., Rygaard, J., and Danø, K. 1997. Expression of matrix metalloprotease‐9 in vascular pericytes in human breast cancer. Lab. Invest. 77:345‐355.
   Nör, J.E., Mitra, R.S., Sutorik, M.M., Mooney, D.J., Castle, V.P., and Polverini, P.J. 2000. Thrombospondin‐1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J. Vasc. Res. 37:209‐218.
   Qian, X., Wang, T.N., Rothman, V.L., Nicosia, R.F., and Tuszynski, G.P. 1997. Thrombospondin‐1 modulates angiogenesis in vitroby up‐regulation of matrix metalloproteinase‐9 in endothelial cells. Exper. Cell Res. 235:403‐412.
   Remacle, A.G., Noël, A., Duggan, C., McDermott, E., O'Higgins, N., Foidart, J.M., and Duffy, M.J. 1998. Assay of matrix metalloproteinases types 1, 2, 3 and 9 in breast cancer. Br. J. Cancer 77:926‐931.
   Rodrigues, R.G., Guo, N.‐H., Zhou, L., Sipes, J.M., Williams, S.B., Smyth Templeton, N., Gralnick, H.R., and Roberts, D.D. 2001. Conformational regulation of the fibronectin binding and α3β1 integrin‐mediated adhesive activities of thrombospondin‐1. J. Biol. Chem. 276:27913‐27922.
   Rodrídguez‐Manzaneque, J.C., Lane, T.F., Ortega, M.A., Hynes, R.O., Lawler, J., and Iruela‐Arispe, M.L. 2001. Thrombospondin‐1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase‐9 and moblization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. U.S.A. 98:12485‐12490.
   Rudolph‐Owen, L.A., Chan, R., Muller, W.J., and Matrisian, L.M. 1998. The matrix metalloproteinase matrilysin influences early‐stage mammary tumorigenesis. Cancer Res. 58:5500‐5506.
   Savill, J., Hogg, N., Ren, Y., and Haslett, C. 1992. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90:1513‐1522.
   Schultz‐Cherry, S., Ribeiro, S., Gentry, L., and Murphy‐Ullrich, J.E. 1994. Thrombospondin binds and activates the small and large forms of latent transforming growth factor‐βin a chemically defined system. J. Biol. Chem. 269:26775‐26782.
   Schultz‐Cherry, S., Chen, H., Mosher, D.F., Misenheimer, T.M., Krutzsch, H.C., Roberts, D.D., and Murphy‐Ullrich, J.E. 1995. Regulation of transforming growth factor‐βactivation by discrete sequences of thrombospondin‐1. J. Biol. Chem. 270:7304‐7310.
   Simantov, R., Febbraio, M., Crombie, R., Asch, A.S., Nachman, R.L., and Silverstein, R.L. 2001. Histidine‐rich glycoprotein inhibits the antiangiogenic effect of thrombospondin‐1. J. Clin. Invest. 107:45‐52.
   Solovey, A., Gui, L., Ramakrishnan, S., and Hebbel, R.P. 1999. Sickle cell anemia as a possible state of enhanced anti‐apoptotic tone: Survival effect of vascular endothelial growth factor on circulation and unanchored endothelial cells. Blood 93:3824‐3830.
   Streit, M., Velasco, P., Brown, L.F., Skobe, M., Richard, L., Riccardi, L., Lawler, J., and Detmar, M. 1999. Overexpression of thrombospondin‐1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am. J. Pathol. 155:441‐452.
   Tolsma, S.S., Volpert, O.V., Good, D.J., Frazier, W.A., Polverini, P.J., and Bouck, N. 1993. Peptides derived from two separate domains of the matrix protein thrombospondin‐1 have anti‐angiogenic activity. J. Cell Biol. 122:497‐511.
   Volpert, O.V., Lawler, J., and Bouck, N.P. 1998. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin‐1. Proc. Natl. Acad. Sci. U.S.A. 95:6343‐6348.
   Weinstat‐Saslow, D.L., Zabrenetzky, V.S., VanHoutte, K., Frazier, W.A., Roberts, D.D., and Steeg, P.S. 1994. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54:6504‐6511.
   Wilson, K.E., Li, Z., Kara, M., Gardner, K.L., and Roberts, D.D. 1999. β1 integrin‐ and proteoglycan‐mediated stimulation of T lymphoma cell adhesion and mitogen‐activated protein kinase signaling by thrombospondin‐1 and thrombospondin‐1 peptides. J. Immunol. 163:3621‐3628.
   Yabkowitz, R., Dixit, V.M., Guo, N., Roberts, D.D., and Shimizu, Y. 1993. Activated T‐cell adhesion to thrombospondin is mediated by the α4β1 (VLA‐4) and α5β1 (VLA‐5) integrins. J. Immunol. 151:149‐158.
   Zajchowski, D.A., Band, V., Trask, D.K., Kling, D., Connolly, J.L., and Sager, R. 1990. Suppression of tumor‐forming ability and related traits in MCF‐7 human breast cancer cells by fusion with immortal mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 87:2314‐2318.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library