Chemotaxis Assays for Eukaryotic Cells

Sally H. Zigmond1, Ellen F. Foxman2, Jeffrey E. Segall3

1 University of Pennsylvania, Philadelphia, Pennsylvania, 2 Stanford University Medical School, Stanford, California, 3 Albert Einstein College of Medicine, Bronx, New York
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 12.1
DOI:  10.1002/0471143030.cb1201s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Chemotaxis is a complex response of a cell to an external stimulus. It involves detecting and measuring the concentration of the chemoattractant, biochemical transmission of the information, and the motility and adhesive changes associated with the response. This unit describes a number of chemotaxis assays that can be used to identify chemoattractants individually and in largeā€scale screenings, to distinguish chemotaxis from chemokinesis, and to analyze cellular behavioral and biochemical responses. Some of these assays such as the filter, under agarose, and small population assays, can be used to monitor the behavior of large groups of cells; the bridge, pipet, and upshift assays can be used to analyze the responses of single cells.

PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Filter Assay for Chemotaxis
  • Support Protocol 1: Calculating the Distance Cells are Expected to Move in Thick Filters in the Absence of Chemotaxis
  • Basic Protocol 2: Under‐Agarose Chemotaxis Assay
  • Basic Protocol 3: Small Population Chemotaxis Assay
  • Basic Protocol 4: Bridge Chemotaxis Assay
  • Basic Protocol 5: Pipet Chemotaxis Assay
  • Basic Protocol 6: Upshift Chemotaxis Assay
  • Support Protocol 2: Using Image Analysis Programs to Assess Chemotaxis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Filter Assay for Chemotaxis

  • Buffer for upper and lower wells (see Critical Parameters discussion on media)
  • Chemoattractant in buffer
  • Cells of interest
  • 3.7% (w/v) formaldehyde in PBS ( appendix 2A)
  • Giemsa stain (see recipe) or Diff‐Quick (EM Science) for neutrophils; hematoxylin for lymphocytes
  • 70% and 100% isopropanol
  • 1:1 (v/v) isopropanol/Americlear
  • Americlear (Baxter Biotech)
  • Permount (EM Science)
  • 15‐µm polystyrene beads (Polysciences)
  • Chemotaxis chamber: blind‐well or multiwell chamber (Fig. ; Neuro Probe) with appropriate filters, or 24‐well tissue culture plate with filter inserts (see Critical Parameters)
  • Filter scraper (Neuro Probe; optional)
  • Microscope with 40× objective and micrometer (16× objective optional)
  • Additional reagents and equipment for counting cells using a hemacytometer (unit 1.1) or cell sorter

Support Protocol 1: Calculating the Distance Cells are Expected to Move in Thick Filters in the Absence of Chemotaxis

  • Agarose plate mixture (see recipe)
  • Migration medium (see recipe)
  • Cell suspension (107/ml) in recipemigration medium
  • Chemoattractant solution in recipemigration medium
  • Absolute methanol
  • 37% (w/v) formaldehyde
  • 0.5% (w/v) Fields stain B (Gallard‐Schlesinger)
  • 2.5% (w/v) Fields stain A (Gallard‐Schlesinger)
  • 35‐mm tissue culture dishes
  • 3‐mm hole cutter (e.g., steel punch or plastic pipet tip), sterile, with a vacuum line and a catch flask
  • Template for cutting 3‐mm wells separated by 2 mm in a single line
  • Counting grid (optional)
NOTE: All culture incubations should be performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified. Some media (e.g., DMEM) may require altered levels of CO 2 to maintain pH 7.4.

Basic Protocol 2: Under‐Agarose Chemotaxis Assay

  • Purified agar (e.g., Noble agar, Difco)
  • Bonner's salts (see recipe)
  • Dictyostelium cells at ≤5 × 106 cells/ml
  • 17 mM Sorensen's phosphate buffer, pH 6.2 (see recipe)
  • Chemoattractant solution in recipeSorensen's phosphate buffer
  • 10‐cm petri dishes

Basic Protocol 3: Small Population Chemotaxis Assay

  • Cells: whole blood, neutrophils in suspension, or Dictyostelium discoideum
  • 0.9% (w/v) NaCl
  • HEPES‐buffered HBSS (prepare as for recipeHBSS in appendix 2A, but replace bicarbonate with 10 mM HEPES acid) containing 0.2% (w/v) recipeBSA (for neutrophils in suspension)
  • 17 mM Sorensen's phosphate buffer, pH 6.2 (for Dictyostelium; see recipe)
  • Chemoattractant in HEPES‐buffered HBSS/1% (w/v) gelatin
  • HEPES‐buffered HBSS/1% (w/v) gelatin
  • 20 × 40–mm coverslips, unwashed (neutrophils) or acid‐washed (Dictyostelium; see recipe)
  • Glass (Neuro Probe) or Plexiglas bridge chamber (Fig. ; see Critical Parameters)
  • Microscope with 40× phase objective

Basic Protocol 4: Bridge Chemotaxis Assay

  • Chemoattractant solution in assay buffer
  • Assay buffer: 17 mM Sorensen's phosphate buffer, pH 6.2 (see recipe), with or without CaCl 2 and MgCl 2 (for Dictyostelium), or DPBS ( appendix 22); JRH Biosciences; for MTLn3 cells)
  • Cells of interest
  • Omega dot tubing (4‐in. glass capillary tubing, 1‐mm o.d. × 0.58‐mm i.d.; A‐M Stevens)
  • Pipet puller for microinjection or neurobiology, capable of producing ∼0.1‐µm tip diameters (e.g., David Kopf Instruments, Narishige, Sutter Instruments)
  • Syringe with fine‐bore needle (e.g., 3‐in., 30‐G)
  • Micromanipulator that can be attached to a microscope stage (e.g., Leitz, Narishige)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aznavoorian, S., Stracke, M.L., Parsons, J., McClanahan, J., and Liotta, L.A. 1996. Integrin αvβ3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J. Biol. Chem. 271:3247‐3254.
   Baggiolini, M. 1998. Chemokines and leukocyte traffic. Nature 392:565‐569.
   Baggiolini, M., Dewald, B., and Moser, B. 1997. Human chemokines: An update. Annu. Rev. Immunol. 15:675‐705.
   Bailly, M., Yan, L., Whitesides, G.M., Condeelis, J.S., and Segall, J.E. 1998. Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells. Exp. Cell Res. 241:285‐299.
   Bignold, L.P. 1988. Kinetics of chemo‐attraction of polymorphonuclear leukocytes towards N‐formyl peptide studied with a novel polycarbonate (Nucleopore) membrane in the Boyden chamber. Experientia 44:518‐521.
   Boyden, S.V. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115:453‐466.
   Buettner, H.M., Lauffenburger, D.A., and Zigmond, S.H. 1989. Measurement of leukocyte motility and chemotaxis parameters with Millipore filter assay. J. Immunol. Methods 123:25‐37.
   Cammer, M., Wyckoff, J., and Segall, J.E. 1997. Computer‐assisted analysis of single‐cell behavior. Methods Mol. Biol. 75:459‐481.
   Campbell, J.J., Foxman, E.F., and Butcher, E.C. 1997a. Chemoattractant receptor crosstalk as a regulatory mechanism in leukocyte adhesion and migration. Eur. J. Immunol. 27:2571‐2578.
   Campbell, J.J., Qin, S., Bacon, K.B., Mackay, C.R., and Butcher, E.C. 1997b. Biology of chemokine and classical chemoattractant receptors: Differential requirements for adhesion‐triggering versus chemotactic responses in lymphoid cells. J. Cell Biol. 134:255‐266.
   Carter, S.B. 1965. Principles of cell motility: The direction of cell movement and cancer invasion. Nature 208:1183‐1187.
   Chenoweth, D.E., Rowe, J.G., and Hugli, T.E. 1979. A modified method for chemotaxis under agarose. J. Immunol. Methods 25:337‐353.
   Condic, M.C. and Letourneau, P.C. 1997. Ligand‐induced changes in integrin espression regulate neuronal adhesion and neurite outgrowth. Nature 389:853‐855.
   Devreotes, P.N. 1994. G protein‐linked signaling pathways control the developmental program of Dictyostelium. Neuron 12:235‐241.
   Devreotes, P., Fontana, D., Klein, P., Sherring, J., and Theibert, A. 1987. Transmembrane signaling Dictyostelium. Methods Cell Biol. 28:299‐331.
   Fisher, P.R., Merkl, R., and Gerisch, G. 1989. Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol. 108:973‐984.
   Foxman, E.F., Campbell, J.J., and Butcher, E.C. 1997. Multi‐step navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139:1349‐1360.
   Harris, A.K. 1973. Behavior of cells on substrata of variable adhesiveness. Exp. Cell Res. 77:285‐297.
   Harvath, L., Falk, W., and Leonard, E.J. 1980. Rapid quantitation of neutrophil chemotaxis: Use of polyvinylpyrrolindone‐free polycarbonate membrane in a multiwell assembly. J. Immunol. Methods 37:39‐45.
   Huang, A.J., Furie, M.B., Nicholson, S.C., Fischbarg, J., Liebovitch, L.S., and Silverstein, S.C. 1988. Effects of human neutrophil chemotaxis across human endothelial cell monolayers to ions and macromolecules. J. Cell Physiol. 135:355‐366.
   Jungi, T.W. 1975. Assay of chemotaxis by a reversible Boyden chamber eliminating cell detachment. Int. Arch. Allergy Appl. Immunol. 48:341‐352.
   Konijn, T.M. 1970. Microbiological assay of cyclic 3′,5′‐AMP. Experientia 26:367‐369.
   Konijn, T.M. and Raper, K.B. 1961. Cell aggregation in Dictyostelium discoideum. Dev. Biol. 3:725‐756.
   Konijn, T.M. and Van Haastert, P.J.M. 1987. Measurement of chemotaxis in Dictyostelium. Methods Cell Biol. 28:283‐298.
   Krauss, A.H., Nieves, A.L., Spada, C.S., and Woodward, D.F. 1994. Determination of leukotriene effects on human neutrophil chemotaxis in vitro by differential assessment of cell motility and polarity. J. Leukocyte Biol. 55:201‐208.
   Laroche, L., Papiernik, M., and Bach, J.F. 1983. Sezary syndrome: Specific skin‐directed migration of peripheral blood lymphocytes. J. Immunol. 130:2467‐2470.
   Lauffenburger, D.A. and Zigmond, S.H. 1981. Chemotactic factor concentration gradients in chemotaxis assay system. J. Immunol. Methods 40:45‐60.
   Lauffenburger, D.A., Rothman, C., and Zigmond, S.H. 1983. Measurement of leukocyte motility and chemotaxis parameters with a linear under‐agarose assay. J. Immunol. 131:940‐947.
   Loike, J.D., el Khoury, J., Cao, L., Richards, C.P., Rascoff, H., Mandeville, J.T., Maxfield, F.R., and Silverstein, S.C. 1995. Fibrin regulates neutrophil migration in response to interleukin 8, leukotriene B4, tumor necrosis factor, and formyl‐methionyl‐leucyl‐phenylalanine. J. Exp. Med. 181:1763‐1772.
   Maniak, M., Rauchenberger, R., Albrecht, R., Murphy, J., and Gerisch, G. 1995. Coronin involved in phagocytosis: Dynamics of particle‐induced relocalization visualized by a green fluorescent protein Tag. Cell 83:915‐924.
   Marks, P.W., Hendrey, B., and Maxfield, F.R. 1991. Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration. J. Cell Biol. 112:149‐158.
   Maxfield, F.R. 1993. Regulation of leukocyte locomotion by Ca2+. Trends Cell Biol. 3:386‐391.
   McCormick, B.A., Colgan, S.P., Delp‐Archer, C., Miller, S.I., and Madara, J.L. 1993. Salmonella typhimurium attachment to human intestinal epithelial monolayers: Tanscellular signalling to subepithelial neutrophils. J. Cell Biol. 123:895‐907.
   McCormick, B.A., Hofman, P.M., Kim, J., Carnes, D.K., Miller, S.I., and Madara, J.L. 1995. Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J. Cell Biol. 131:1599‐1608.
   McKenna, M.P. and Raper, J.A. 1988. Growth cone behavior on gradients of substratum bound laminin. Dev. Biol. 130:232‐236.
   Moghe, P.V., Nelson, R.D., and Tranquillo, R.T. 1995. Cytokine‐stimulated chemotaxis of human neutrophils in a 3‐D conjoined fibrin gel assay. J. Immunol. Methods 180:193‐211.
   Moores, S.L., Sabry, J.H., and Spudich, J.A. 1996. Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. U.S.A. 93:443‐446.
   Nash, S., Stafford, J., and Madara, J.L. 1987. Effects of polymorphonuclear leukotye transmigration on the barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 80:1104‐1113.
   Nelson, R.D., Quie, P.G., and Simmons, R.L. 1975. Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115:1650‐1656.
   Omann, G.M. and Sklar, L.A. 1988. Response of neutrophils to stimulus infusion: Differential sensitivity of cytoskeletal activation and oxidant production. J. Cell Biol. 107:951‐958.
   Orredson, S.U., Knighton, D.R., Scheuenstuhl, H., and Hunt, T.K. 1983. A quantitative in vitro study of fibroblast and endothelial cell migration in response to serum and wound fluid. J. Surg. Res. 35:249‐258.
   Palmblad, J., Uden, A., and Venizelos, N. 1982. The quantification of neutrophil orientation and migration under agarose—A new method for detecting directed and random movements. J. Immunol. Methods 44:37‐53.
   Rhodes, J.M. 1982. Measurement of chemotaxis in Boyden chamber filter assays. Is the checkerboard correction valid? J. Immunol. Methods 49:235‐236.
   Schleicher, M., Andre, B., Andreoli, C., Eichinger, L., Haugwitz, M., Hofmann, A., Karakesisoglou, J., Stockelhuber, M., and Noegel, A.A. 1995. Structure/function studies on cytoskeletal proteins in Dictyostelium amoebae as a paradigm. FEBS Lett. 369:38‐42.
   Segall, J.E. 1992. Behavioral responses of streamer F mutants of Dictyostelium discoideum: Effects of cyclic GMP on cell motility. J. Cell Sci. 101:589‐597.
   Segall, J.E. 1993. Polarization of yeast cells in spatial gradients of a mating factor. Proc. Natl. Acad. Sci. U.S.A. 90:8332‐8336.
   Segall, J.E. and Gerisch, G. 1989. Genetic approaches to cytoskeleton function and the control of cell motility. Curr. Opin. Cell Biol. 1:44‐50.
   Segall, J.E., Tyerech, S., Boselli, L., Masseling, S., Helft, J., Chan, A., Jones, J., and Condeelis, J. 1996. EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin‐dependent mechanism. Clin. Exp. Met. 14:61‐72.
   Seligmann, B., Chused, T.M., and Gallin, J.I. 1981. Human neutrophil heterogeneity identified using flow microfluorimetry to monitor membrane potential. J. Clin. Invest. 68:1125‐1131.
   Senior, R.M., Griffin, G.L., and Mecham, R.P. 1980. Chemotactic activity of elastin‐derived peptides. J. Clin. Invest. 66:859‐862.
   Showell, H.J., Freer, R.J., Zigmond, S.H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E.L. 1976. The structure‐activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J. Exp. Med. 143:1154‐1169.
   Soll, D.R., 1987. Methods for manipulating and investigating developmental timing in Dictyostelium discoideum. Methods Cell Biol. 28:413‐431.
   Soll, D.R. 1988. “DMS,” a computer‐assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: Its application to Dictyostelium chemotaxis. Cell Motil. Cytoskeleton 10:91‐106.
   Soll, D.R. 1995. The use of computers in understanding how animal cells crawl. Int. Rev. Cytol. 163:43‐104.
   Song, H.‐J., Ming, G.‐L., and Poo, M.M. 1997. cAMP‐induced switching in turning direction of nerve growth cones. Nature 388:275‐279.
   Stokes, C.L., Rupnick, M.A., Williams, S.K., and Lauffenburger, D.A. 1990. Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63:657‐668.
   Sussman, M. 1987. Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol. 28:9‐29.
   Tessier‐Lavigne, M. and Goodman, C.S. 1996. The molecular biology of axon guidance. Science 274:1123‐1133.
   Tranquillo, R.T., Zigmond, S.H., and Lauffenburger, D.A. 1988. Measurement of the chemotaxis coefficient for human neutrophils in the under‐agarose migration assay. Cell Motil. Cytoskeleton 11:1‐15.
   Van Haastert, P.J.M. 1995. Transduction of the chemotactic cAMP signal across the plasma membrane of Dictyostelium cells. Experientia 51:1144‐1154.
   Varnum‐Finney, B., Schroeder, N.A., and Soll, D.R. 1988. Adaptation in the motility response to cAMP in Dictyostelium discoideum. Cell Motil. Cytoskeleton 9:9‐16.
   Watts, D.J. and Ashworth, J.M. 1970. Growth of myxameobae of the cellular slime mold Dictyostelium discoideum in axenic culture. Biochem. J. 119:171‐174.
   Webb, L.M.C., Ehrengruber, M.U., Clark‐Lewis, I., Baggiolini, M., and Rot, A. 1995. Binding to heparin sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl. Acad. Sci. U.S.A. 90:7158‐7162.
   Westphal, M., Jungbluth, A., Heidecker, M., Muhlbauer, B., Heizer, C., Schwartz, J.M., Marriott, G., and Gerisch, G. 1997. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP‐actin fusion protein. Curr. Biol. 7:176‐183.
   Wilkinson, P.C. 1982. The measurement of leukocyte chemotaxis. J. Immunol. Methods 51:133‐148.
   Wilkinson, P.C. and Allan, R.B. 1978. Chemotaxis of neutrophil leukotyes towards substratum‐bound protein attractants. Exp. Cell Res. 117:403‐412.
   Zhelev, D.V., Alteraifi, A.M., and Hochmuth, R.M. 1996. F‐actin network formation in tethers and in pseudopods stimulated by chemoattractant. Cell. Motil. Cytoskel. 35:331‐344.
   Zicha, D., Dunn, G.A., and Jones, G. 1997. Analyzing chemotaxis using the Dunn direct‐viewing chamber. In Basic Cell Culture Protocols, 2nd ed. (J.W. Pollard and J.M. Walker, eds.) pp.449‐458. Humana Press, Totowa, N.J.
   Zigmond, S.H. 1977. The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75:606‐616.
   Zigmond, S.H. and Hirsch, J.G. 1973. Leukocyte locomotion and chemotaxis: New methods for evaluation, and demonstration of a cell‐derived chemotactic factor. J. Exp. Med. 137:387‐410.
   Zigmond, S.H. and Sullivan, S.J. 1979. Adaptation of leukocytes to peptide chemotactic factors. J. Cell Biol. 82:517‐527.
PDF or HTML at Wiley Online Library