Measuring Protein Interactions by Optical Biosensors

Peter Schuck1, Lisa F. Boyd1, Peter S. Andersen2

1 National Institutes of Health, Bethesda, Maryland, 2 University of Maryland, Rockville, Maryland
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 17.6
DOI:  10.1002/0471143030.cb1706s22
Online Posting Date:  May, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


In recent years, optical evanescent wave biosensors have been used to characterize protein‐protein interactions, including determination of equilibrium binding constants and bimolecular rate constants. This surface binding technique can provide information about chemical on‐rate constants, the lifetimes of complexes formed, and the time course of the signal. This unit provides a thorough, well‐illustrated discussion of the principles of optical biosensors, experimental design, ligand immobilization, experimental data analysis, and common obstacles and possible solutions.

PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Immobilization Protocols
  • Binding Experiments and Data Analysis
  • Common Experimental Obstacles
  • Summary
  • Acknowledgment
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Andersen, P.S., Lavoie, P.M., Sekaly, R.P., Churchill, H., Kranz, D.M., Schlievert, P.M., Karjalainen, K., and Mariuzza, R.A. 1999. Role of the T cell receptor alpha chain in stabilizing TCR‐superantigen‐MHC class II complexes. Immunity 10:473‐483.
   Buckle, P.E., Davies, R.J., Kinning, T., Yeung, D., Edwards, P.R., Pollard‐Knight, D., and Lowe, C.R. 1993. The resonant mirror: A novel optical sensor for direct sensing of biomolecular interactions. Part II: Applications. Biosens. Bioelectron. 8:355‐363.
   Davis, S.J., Ikemizu, S., Wild, M.K., and van der Merwe, P.A. 1998. CD2 and the nature of protein interactions mediating cell‐cell recognition. Immunol. Rev. 163:217‐236.
   Edwards, P.R., Gill, A., Pollard‐Knight, D.V., Hoare, M., Buckle, P.E., Lowe, P.A., and Leatherbarrow, R.J. 1995. Kinetics of protein‐protein interactions at the surface of an optical biosensor. Anal. Biochem. 231:210‐217.
   Edwards, P.R., Maule, C.H., Leatherbarrow, R.J., and Winzor, D.J. 1998. Second‐order kinetic analysis of IAsys biosensor data: Its use and applicability. Anal. Biochem. 263:1‐12.
   Garland, P.B. 1996. Optical evanescent wave methods for the study of biomolecular interactions. Q. Rev. Biophys. 29:91‐117.
   Gershon, P.D. and Khilko, S. 1995. Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the Biacore surface plasmon resonance detector. J. Immunol. Methods. 183:65‐76.
   Glaser, R.W. and Hausdorf, G. 1996. Binding kinetics of an antibody against HIV p24 core protein measured with real‐time biomolecular interaction analysis suggest a slow conformational change in antigen p24. J. Immunol. Methods. 189:1‐14.
   Hall, D.R. and Winzor, D.J. 1997. Use of a resonant mirror biosensor to characterize the interaction of carboxypeptidase A with an elicited monoclonal antibody. Anal. Biochem. 244:152‐160.
   Hermanson, G.T. 1996. Bioconjugate Techniques. Academic Press, San Diego.
   Khilko, S.N., Jelonek, M.T., Corr, M., Boyd, L.F., Bothwell, A.L.M., and Margulies, D.H. 1995. Measuring interactions of MHC class I molecules using surface plasmon resonance. J. Immunol. Methods. 183:77‐94.
   Knoll, W. 1998. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 49:569‐638.
   Leckband, D.E. 1997. The influence of protein and interfacial structure on the self‐assembly of oriented protein arrays. Adv. Biophys. 34:173‐190.
   Leckband, D.E., Kuhl, T., Wang, H.K., Herron, J., Muller, W., and Ringsdorf, H. 1995. 4‐4‐20 anti‐fluorescyl IgG Fab′ recognition of membrane bound hapten: Direct evidence for the role of protein and interfacial structure. Biochemistry 36:11467‐11478.
   Lukosz, W. 1991. Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosens. Bioelectronics. 6:215‐225.
   Malmborg, A.C. and Borrebaeck, C.A. 1995. Biacore as a tool in antibody engineering. J. Immunol. Methods. 183:7‐13.
   Margulies, D.H., Corr, M., Boyd, L.F., and Khilko, S.N. 1993. MHC Class I/peptide interactions: Binding specificity and kinetics. J. Mol. Recognit. 6:59‐69.
   Margulies, D.H., Plaksin, D., Khilko, S.N., and Jelonek, M.T. 1996. Studying interactions involving the T‐cell antigen receptor by surface plasmon resonance. Curr. Opin. Immunol. 8:262‐270.
   Minton, A.P. 1995. Confinement as a determinant of macromolecular structure and reactivity. 2. Effects of weakly attractive interactions between confined macrosolutes and confining structures. Biophys. J. 68:1311‐1322.
   Minton, A.P. 1998. Molecular crowding: Analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol. 295:127‐149.
   Muller, K.M., Arndt, K.M., and Plückthun, A. 1998. Model and simulation of multivalent binding to fixed ligands. Anal. Biochem. 261:149‐158.
   Myszka, D.G., Jonsen, M.D., and Graves, B.J. 1998. Equilibrium analysis of high affinity interactions using Biacore. Anal. Biochem. 265:326‐30.
   Nieba, L., Krebber, A., and Plückthun, A. 1996. Competition Biacore for measuring true affinities: Large differences from values determined from binding kinetics. Anal. Biochem. 234:155‐165.
   Ober, R.J. and Ward, E.S. 1999a. The influence of signal noise on the accuracy of kinetic constants measured by surface plasmon resonance experiments. Anal. Biochem. 273:49‐59.
   Ober, R.J. and Ward, E.S. 1999b. The choice of reference cell in the analysis of kinetic data using Biacore. Anal. Biochem. 271:70‐80.
   O'Shannessy, D.J. and Winzor, D.J. 1996. Interpretation of deviations from pseudo‐first‐order kinetic behavior in the characterization of ligand binding by biosensor technology. Anal. Biochem. 236:275‐283.
  O'Shannessy, D.J., Brigham‐Burke, M., and Peck, K. 1992. Immobilization chemistries suitable for use in the Biacore surface plasmon resonance detector. Anal. Biochem. 205:132‐136.
  O'Shannessy, D.J., Brigham‐Burke, M., Soneson, K.K., Hensley, P., and Brooks, I. 1993. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods. Anal. Biochem. 212:457‐468.
  O'Shannessy, D.J., O'Donnell, K.C., Martin, J., and Brigham‐Burke, M. 1995. Detection and quantitation of hexa‐histidine‐tagged recombinant proteins on western blots and by a surface plasmon resonance biosensor technique. Anal Biochem. 229:119‐124.
   Plant, A.L., Brigham‐Burke, M., Petrella, E.C., and O'Shannessy, D.J. 1995. Phospholipid/alkanethiol bilayers for cell‐surface receptor studies by surface plasmon resonance. Anal. Biochem. 226:342‐348.
   Ramsden, J.J., Bachmanova, G.I., and Archakov, A.I. 1996. Immobilization of proteins to lipid bilayers. Biosens. Bioelectronics 11:523‐528.
   Schuck, P. 1996. Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys. J. 70:1230‐1249.
   Schuck, P. 1997a. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26:541‐566.
   Schuck, P. 1997b. Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 8:498‐502.
   Schuck, P. and Minton, A.P. 1996a. Minimal requirements for internal consistency of the analysis of surface plasmon resonance biosensor data. Trends Biochem. Sci. 252:458‐460.
   Schuck, P. and Minton, A.P. 1996b. Analysis of mass transport limited binding kinetics in evanescent wave biosensors. Anal. Biochem. 240:262‐272.
   Schuck, P., Millar, D.B., and Kortt, A.A. 1998. Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor. Anal. Biochem. 265:79‐91.
   Schuster, S.C., Swanson, R.V., Alex, L.A., Bourret, R.B., and Simon, M.I. 1993. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature 365:343‐347.
   Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., and Whitesides, G.M. 1996. A self‐assembled monolayer for the binding and study of histidine‐tagged proteins by surface plasmon resonance. Anal. Chem. 68:490‐497.
   Silhavy, T.J., Szmelcman, S., Boos, W., and Schwartz, M. 1975. On the significance of the retention of ligand by protein. Proc. Natl. Acad. Sci. USA. 72:2120‐2124.
   Stein, T. and Gerisch, G. 1996. Oriented binding of a lipid‐anchored cell adhesion protein onto a biosensor surface using hydrophobic immobilization and photoactive crosslinking. Anal. Biochem. 237:252‐259.
   van der Merwe, P.A. and Barclay, A.N. 1996. Analysis of cell‐adhesion molecule interactions using surface plasmon resonance. Curr. Opin. Immunol. 8:257‐261.
   Yarmush, M.L., Patankar, D.B., and Yarmush, D.M. 1996. An analysis of transport resistances in the operation of Biacore; implications for kinetic studies of biospecific interactions. Mol. Immunol. 33:1203‐1214.
Key References
   Davis et al, 1998. See above.
  Contains a detailed description of analyte aggregation effects on the measured surface binding.
   Nieba et al., 1996. See above.
  Demonstration how competition approaches can be used to circumvent kinetic artifacts.
   O'Shannessy et al., 1992. See above.
  Collection of immobilization techniques.
   Schuck, 1997b. See above.
  General review of the method and its application.
Internet Resources
  Web site for Biacore; extensive list of published biosensor applications
  Web site for Affinity Sensors; extensive list of published biosensor applications.
PDF or HTML at Wiley Online Library