Tail Vein Assay of Cancer Metastasis

Michael Elkin1, Israel Vlodavsky1

1 Hadassah‐Hebrew University Hospital, Jerusalem, Israel
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 19.2
DOI:  10.1002/0471143030.cb1902s12
Online Posting Date:  November, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The most damaging change during cancer progression is the switch from a locally growing tumor to a metastatic killer. This switch involves numerous alterations that allow tumor cells to complete the complex series of events needed for metastasis. In considering steps required for successful metastasis, extravasation from blood vessels in target organs is regarded as a critical process. Circulating tumor cells arrested in the capillary beds of different organs must invade the endothelial cell lining of blood vessels and degrade its underlying basement membrane in order to escape into the extravascular tissue where they establish metastasis. This unit describes the most common assay applied to evaluate the metastatic potential of blood‐borne tumor cells. The protocol is often called “experimental metastasis”, distinct from “spontaneous metastasis”, where the tumor cells are first allowed to form a primary tumor in the site of injection and then escape into lymphatic or blood circulation. Cultured tumor cells are injected into the tail vein and allowed to circulate. After 12 to 20 days the recipients are euthanized and the lungs are evaluated for the presence of metastatic tumors.

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Cells of interest growing in tissue culture (e.g., B16 mouse melanoma, ATCC#CRL‐1619; 3LL Lewis lung carcinoma; A375 human melanoma, ATCC#CRL‐6322; 13762 MAT rat mammary adenocarcinoma)
  • Supplemented high‐glucose DMEM‐10 (unit 10.4)
  • Trypsin/EDTA solution (unit 10.4)
  • CMF‐DPBS: divalent cation‐free Dulbecco's PBS (CMF‐DPBS; Life Technologies; appendix 2A)
  • Mice for injection (or rats)
  • 70% ethanol
  • 3.8% (v/v) formaldehyde
  • Bouin's solution (see recipe; optional)
  • 6‐cm tissue culture dishes
  • 15‐ml polypropylene tubes
  • Sorvall RT6000D centrifuge and H‐1000B rotor or equivalent
  • Beaker containing warm water (∼50° to 60°C)
  • Lamp with 150‐W light bulb (optional)
  • Restraining device (restrainer)
  • 1‐ml syringe, tuberculin type
  • 27‐G, ¾‐in. needles
  • Dissecting microscope
  • Additional reagents and equipment for counting cells with hemacytometer (unit 1.1)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Al‐Mehdi, A.B., Tozawa, K., Fisher, A.B., Shientag, L., Lee, A., and Muschel, R.J. 2000. Intravascular origin of metastasis from the proliferation of endothelium‐attached tumor cells: A new model for metastasis. Nat. Med. 6:100‐102.
  Cameron, M.D., Schmidt, E.E., Kerkvliet, N., Nadkarni, K.V., Morris, V.L., Groom, A.C., Chambers, A.F., and MacDonald, I.C. 2000. Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60:2541‐2546.
  Chambers, A.F. and Matrisian, L.M. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl.Cancer Inst. 89:1260‐1270.
  Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 406:532‐535.
  Fidler, I.J. 1973a. Selection of successive tumour lines for metastasis. Nature New Biol. 242:148‐149.
  Fidler, I.J. 1973b. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9:223‐227.
  Fidler, I.J. and Ellis, L.M. 1994. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 79:185‐188.
  Finkel, E. 1999. Potential target found for antimetastasis drugs. Science. 285:33‐34.
  Fitzer‐Attas, C.J., Do, M.S., Feigelson, S., Vadai, E., Feldman, M., and Eisenbach, L. 1997. Modification of PDGFalpha receptor expression or function alters the metastatic phenotype of 3LL cells. Oncogene. 15:1545‐1554.
  Hart, I.R. and Fidler, I.J. 1980. Cancer invasion and metastasis. Q. Rev. Biol. 55:121‐142.
  Humphries, M.J., Olden, K., and Yamada, K.M. 1986. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 233:467‐470.
  Iwamoto, Y., Robey, F.A., Graf, J., Sasaki, M., Kleinman, H.K., Yamada, Y., and Martin, G.R. 1987. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science. 238:1132‐1134.
  Killion, J.J., Radinsky, R., and Fidler, I.J. 1998. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17:279‐284.
  Kohn, E.C. and Liotta, L.A. 1995. Molecular insights into cancer invasion: Strategies for prevention and intervention. Cancer Res. 55:1856‐1862.
  Liotta, L.A. 1986. Tumor invasion and metastases—role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer. Res. 46:1‐7.
  O'Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., and Folkman, J. 1994. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315‐328.
  Parish, C.R., Coombe, D.R., Jakobsen, K.B., Bennett, F.A., and Underwood, P.A. 1987. Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour‐cell‐derived heparanases. Int. J. Cancer. 40:511‐518.
  Ruoslahti, E. 1996. How cancer spreads. Sci. Am. 275:72‐77.
  Stetler‐Stevenson, W.G., Liotta, L.A., and Kleiner, D.E. 1993. Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 7:1434‐1441.
  Vlodavsky, I. and Friedmann, Y. 2001. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J. Clin. Invest. 108:341‐347.
  Vlodavsky, I., Mohsen, M., Lider, O., Svahn, C.M., Ekre, H.P., Vigoda, M., Ishai‐Michaeli, R., and Peretz, T. 1994. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14:290‐302.
  Vlodavsky, I., Friedmann, Y., Elkin, M., Aingorn, H., Atzmon, R., Ishai‐Michaeli, R., Bitan, M., Pappo, O., Peretz, T., Michal, I., Spector, L., and Pecker, I. 1999. Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5:793‐802.
  Zhang, R.D., Price, J.E., Schackert, G., Itoh, K., and Fidler, I.J. 1991. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res. 51:2029‐2035.
PDF or HTML at Wiley Online Library