Rapid Depletion of Budding Yeast Proteins via the Fusion of an Auxin‐Inducible Degron (AID)

Kohei Nishimura1, Masato T. Kanemaki2

1 Center of Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka, 2 JST, PRESTO, Saitama
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 20.9
DOI:  10.1002/0471143030.cb2009s64
Online Posting Date:  September, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The auxin‐inducible degron (AID) system allows the rapid and reversible proteolysis of proteins of interest, and enables the generation of conditional mutants of budding yeast. The construction of budding yeast AID mutants is simple, and the effect of depletion of essential proteins on proliferation can be confirmed by analyzing their phenotype. In this protocol, we describe a procedure to generate AID mutants of budding yeast via a simple transformation using PCR‐amplified DNA. We also describe methods to confirm the depletion of proteins of interest that are required for proliferation by serial‐dilution and liquid‐culture assays. Curr. Protoc. Cell Biol. 64:20.9.1‐20.9.16. © 2014 by John Wiley & Sons, Inc.

Keywords: auxin; degron; protein degradation; conditional mutant; ubiquitin–proteasome pathway

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Construction of Yeast Strains Expressing a Degron Fusion Protein
  • Basic Protocol 2: Degradation of Degron Fusion Proteins
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Construction of Yeast Strains Expressing a Degron Fusion Protein

  • Template DNA (see Fig. B)
  • Phusion High‐fidelity DNA polymerase (NEB, cat. no. M0530) and 5× Phusion HF buffer
  • 2.5 mM dNTPs (Takara, cat. no. 4030)
  • 0.8% agarose gel (Voytas, )
  • PCR purification kit (e.g., Qiagen QIAquick PCR purification kit)
  • TE buffer, pH 7.5 (see recipe)
  • Budding yeast strain shown in Figure C freshly grown on a YPD plate (see recipe for YPD plates)
  • YPD medium (see recipe)
  • TE/LiAc (see recipe)
  • 10 mg/ml salmon sperm DNA (Trevigen, cat. no. 9610‐5‐D)
  • TE/LiAc/PEG (see recipe)
  • 100% dimethylsulfoxide (DMSO)
  • Selection plates (see recipe)
  • 100 mM CuSO 4 stock solution (see recipe)
  • Lysis buffer (see recipe)
  • Phenol/chloroform/isoamyl alcohol (25:24:1)
  • 100% and 70% ethanol
  • 10 mg/ml RNase stock solution: dissolve RNase power (Sigma, cat. no. R6513) at a 10 mM concentration in 10 mM Tris·Cl, pH 7.5, containing 15 mM NaCl, and then boil for 15 min to inactivate DNase (store in aliquots at −20°C)
  • EX‐Taq (Takara, cat. no. RR001) and 10× EX‐Taq buffer
  • Oligonucleotide sequencing facility
  • Thermal cycler
  • 25°C shaking incubator
  • 50‐ml conical centrifuge tubes (e.g., BD Falcon)
  • Centrifuge
  • 42°C water bath or heat block
  • 2‐ml screw‐cap microcentrifuge tubes
  • 0.5‐mm glass beads (Sigma, cat. no. G8772)
  • Additional reagents and equipment for oligonucleotide synthesis (Egli et al., ), the polymerase chain reaction (PCR; Kramer and Coen, ), agarose gel electrophoresis (Voytas, ), and culture of yeast, including determining cell density (UNTI )

Basic Protocol 2: Degradation of Degron Fusion Proteins

  • Degron‐mutant yeast cells glycerol stock (see protocol 1, step 24)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • YPD or YPG plates with or without IAA (see recipe)
  • 100 mM CuSO 4 stock solution (see recipe)
  • YPR and YPG media (see recipe)
  • 70% ethanol
  • Liquid N 2
  • 0.5 M IAA (see recipe)
  • Hemacytometer (UNTI )
  • Centrifuge
  • 25°C bacteriological incubator
  • Additional reagents and equipment for counting cells using a hemacytometer (UNTI ), processing of fixed cell suspensions for flow cytometry (Labib et al., ), and extraction of whole proteins for western blotting (Foiani et al., )
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Dharmasiri, N., Dharmasiri, S., and Estelle, M. 2005. The F‐box protein TIR1 is an auxin receptor. Nature 435:441‐445.
  Dohmen, R.J., Wu, P., and Varshavsky, A. 1994. Heat‐inducible degron: A method for constructing temperature‐sensitive mutants. Science 263:1273‐1276.
  Egli, M., Herdewijn, P., Matsuda, A., and Sanghvi, Y. 2014. Current Protocols in Nucleic Acid Chemistry. John Wiley & Sons, Hoboken, N.J.
  Foiani, M., Marini, F., Gamba, D., Lucchini, G., and Plevani, P. 1994. The B subunit of the DNA polymerase alpha‐primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell Biol. 14:923‐933.
  Gietz, R.D. and Schiestl, R.H. 2007. High‐efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2:31‐34.
  Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno‐Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. 2004. A versatile toolbox for PCR‐based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947‐962.
  Kanemaki, M.T. 2013. Frontiers of protein expression control with conditional degrons. Pflugers Arch. 465:419‐425.
  Kanemaki, M., Sanchez‐Diaz, A., Gambus, A., and Labib, K. 2003. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423:720‐724.
  Kanke, M., Kodama, Y., Takahashi, T.S., Nakagawa, T., and Masukata, H. 2012. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J. 31:2182‐2194.
  Kepinski, S. and Leyser, O. 2005. The Arabidopsis F‐box protein TIR1 is an auxin receptor. Nature 435:446‐451.
  Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. 1999. Epitope tagging of yeast genes using a PCR‐based strategy: More tags and improved practical routines. Yeast 15:963‐972.
  Kramer, M. F. and Coen, D. M. 2001. Enzymatic amplification of DNA by PCR: Standard procedures and optimization. Curr. Protoc. Mol. Biol. 56:15.1.1–15.1.14.
  Kubota, T., Nishimura, K., Kanemaki, M.T., and Donaldson, A.D. 2013. The Elg1 replication factor C‐like complex functions in PCNA unloading during DNA replication. Mol. Cell 50:273‐280.
  Labib, K., Diffley, J.F., and Kearsey, S.E. 1999. G1‐phase and B‐type cyclins exclude the DNA‐replication factor Mcm4 from the nucleus. Nat. Cell Biol. 1:415‐422.
  Morawska, M. and Ulrich, H.D. 2013. An expanded tool kit for the auxin‐inducible degron system in budding yeast. Yeast 30:341‐351.
  Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and Kanemaki, M. 2009. An auxin‐based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6:917‐922.
  Ramos, J.A., Zenser, N., Leyser, O., and Callis, J. 2001. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349‐2360.
  Sanchez‐Diaz, A., Kanemaki, M., Marchesi, V., and Labib, K. 2004. Rapid depletion of budding yeast proteins by fusion to a heat‐inducible degron. Sci. STKE 2004:PL8.
  Voytas, D. 2000. Agarose gel electrophoresis. Curr. Protoc. Mol. Biol. 51:2.5A.1–2.5A.9.
  Watase, G., Takisawa, H., and Kanemaki, M.T. 2012. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45‐Mcm‐GINS. Curr. Biol. 22:343‐349.
PDF or HTML at Wiley Online Library