The Fluorescent Protein Color Palette

Scott G. Olenych1, Nathan S. Claxton1, Gregory K. Ottenberg1, Michael W. Davidson1

1 Florida State University, Tallahassee, Florida
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 21.5
DOI:  10.1002/0471143030.cb2105s36
Online Posting Date:  September, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Advances in fluorescent protein development over the past 10 years have led to fine‐tuning of the Aequorea victoria jellyfish color palette in the emission color range from blue to yellow, while a significant amount of progress has been achieved with reef coral species in the generation of monomeric fluorescent proteins emitting in the orange to far‐red spectral regions. It is not inconceivable that near‐infrared fluorescent proteins loom on the horizon. Expansion of the fluorescent protein family to include optical highlighters and FRET biosensors further arms this ubiquitous class of fluorophores with biological probes capable of photoactivation, photoconversion, and detection of molecular interactions beyond the resolution limits of optical microscopy. The success of these endeavors certainly suggests that almost any biological parameter can be investigated using the appropriate fluorescent protein–based application.

Keywords: GFP; fluorescent proteins; optical highlighters; biosensors; photoconversion; photoactivation; chromophore; fluorophore; FRET; FRAP; microscopy; confocal

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Fluorescent Protein Brightness and Maturation
  • Phototoxicity and Photostability
  • Oligomerization
  • The Fluorescent Protein Color Palette
  • Optical Highlighter Fluorescent Proteins
  • The Future of Fluorescent Proteins
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Ai, H.‐W., Henderson, J.N., Remington, S.J., and Campbell, R.E. 2006. Directed evolution of a monomeric, bright, and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescent imaging. Biochem. J. (in press) Doi: 10.1042/BJ20060874
   Alkaabi, K.M., Yafea, A., and Ashraf, S.S. 2005. Effect of pH on thermal‐ and chemical‐induced denaturation of GFP. Appl. Biochem. Biotechnol. 126:149‐156.
   Ando, R., Hama, H., Yamamoto‐Hino, M., Mizuno, H., and Miyawaki, A. 2002. An optical marker based on the UV‐induced green‐to‐red‐photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 99:12651‐12656.
   Ando, R., Mizuno, H., and Miyawaki, A. 2004. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370‐1373.
   Baird, G.S., Zacharias, D.A., and Tsien, R.Y. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U. S.A. 97:11984‐11989.
   Beddoe, T., Ling, M., Dove, S., Hoegh‐Guldberg, O., Devenish, R.J., Prescott, M., and Rossjohn, J. 2003. The production, purification and crystallization of a pocilloporin pigment from a reef‐forming coral. Acta Crystallog. D: Biol. Crystallog. 59:597‐599.
   Bevis, B.J. and Glick, B.S. 2002. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20:83‐87.
   Boeck, G. 2001. Current status of flow cytometry in cell and molecular biology. Internatl. Rev. Cytol. 204:239‐298.
   Bulina, M.E., Verkhusha, V.V., Staroverov, D.B., Chudakov, D.M., and Lukyanov, K.A. 2003. Heterooligomeric tagging diminishes non‐specific aggregation of target proteins fused with Anthozoa fluorescent proteins. Biochem. J. 371:109‐114.
   Bulina, M.E., Chudakov, D.M., Britanova, O.V., Yanushevich, Y.G., Staroverov, D.B., Chepurnykh, T.V., Merzlyak, E.M., Shkrob, M.A., Lukyanov, S., and Lukyanov, K.A. 2006. A genetically encoded photosensitizer. Nat. Biotechnol. 24:95‐99.
   Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 99:7877‐7882.
   Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802‐805.
   Chattoraj, M., King, B.A., Bublitz, G.U., and Boxer, S.G. 1996. Ultra‐fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proc. Natl. Acad. Sci. U.S.A. 93:8362‐8367.
   Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., and Lukyanov, K.A. 2003. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21:191‐194.
   Chudakov, D.M., Verkhusha, V.V., Staroverov, D.B., Souslova, E.A., Lukyanov, S., and Lukyanov, K.A. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22:1435‐1439.
   Chudakov, D.M., Lukyanov, S., and Lukyanov, K.A. 2005. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23:605‐613.
   Cinelli, R.A.G., Pellegrini, V., Ferrari, A., Faraci, P., Nifosi, R., Tyagi, M., Giacca, M., and Beltram, F. 2001. Green fluorescent proteins as optically controllable elements in bioelectronics. Appl. Phys. Lett. 79:3353‐3355.
   Clontech, 2005. Living colors fluorescent protein vectors. Clontechniques 20:18‐20.
   Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green‐fluorescent protein. Biochemistry 32:1212‐1218.
   Cormier, M.J. and Eckroade, C.B. 1962. Studies on the bioluminescence of Renilla reniformis. III. Some biochemical comparisons to other Renilla species and determinations of the spectral energy distributions. Biochim. Biophys. Acta 64:340‐344.
   Cornea, A. and Conn, P.M. 2002. Measurement of changes in fluorescence resonance energy transfer between gonadotropin‐releasing hormone receptors in response to agonists. Methods 27:333‐339.
   Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., and Tsien, R.Y. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20:448‐455.
   Cubitt, A.H., Wollenweber, L.A., and Hein, R. 1999. Understanding structure‐function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol. 58:19‐30.
   Davenport, D. and Nichol, J.A.C. 1955. Luminescence in hydromedusae. Proc. Royal Soc. London, Ser. B 144:399‐411.
   Day, R.N. 2005. Imaging protein behavior inside the living cell. Molec. Cell. Endocrin. 230:1‐6.
   Delagrave, S., Hawtin, R., Silva, C., Yang, M., and Youvan, D. 1995. Red‐shifted excitation mutants of the green fluorescent protein. Nat. Biotechnol. 13:151‐154.
   Dickson, R.M., Cubitt, A.B., Tsien, R.Y., and Moerner, W.E. 1997. On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355‐358.
   Dixit, R. and Cyr, R. 2003. Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non‐invasive fluorescence microscopy. The Plant J. 36:280‐290.
   Dixit, R., Cyr, R., and Gilroy, S. 2006. Using intrinsically fluorescent proteins for plant cell imaging. The Plant J. 45:599‐615.
   Durand, R.E. and Olive, P.L. 1982. Cytotoxicity, mutagenicity, and DNA damage by Hoechst 33342. J. Histochem. Cytochem. 30:111‐116.
   Edwards, A.M., Silva, E., Jofre, B., Becker, M.I., and De Ioannes, A.E. 1994. Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. J. Photochem. Photobiol. B 24:179‐186.
   Fradkov, A.F., Verkhusha, V.V., Staroverov, D.B., Bulina, M.E., Yanushevich, Y.G., Martynov, V.I., Lukyanov, S., and Lukyanov, K.A. 2002. Far‐red fluorescent tag for protein labeling. Biochem. J. 368:17‐21.
   Greenbaum, L., Rothmann, C., Lavie, R., and Malik, Z. 2000. Green fluorescent protein photobleaching: A model for protein damage by endogenous and exogenous singlet oxygen. Biol. Chem. 381:1251‐1258.
   Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., and Tsien, R.Y. 2001. Reducing the environmental sensitivity of yellow fluorescent protein: Mechanism and applications J. Biol. Chem. 276:29188‐29194.
   Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., and Tsien, R.Y. 2000. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U.S.A. 97:11990‐11995.
   Gurskaya, N.G., Fradkov, A.F., Terskikh, A., Matz, M.V., Labas, Y.A., Martynov, V.I., Yanushevich, Y.G., Lukyanov, K.A., and Lukyanov, S.A. 2001a. GFP‐like chromoproteins as a source of far‐red fluorescent proteins. FEBS Lett. 507:16‐20.
   Gurskaya, N.G., Savitsky, A.P., Yanushevich, Y.G., Lukyanov, S.A., and Lukyanov, K.A. 2001b. Color transitions in coral's fluorescent proteins by site‐directed mutagenesis. BMC Biochem., 2:6‐12.
   Gurskaya, N.G., Fradkov, A.F., Pounkova, N.I., Staroverov, D.B., Bulina, M.E., Yanushevich, Y.G., Labas, Y.A., Lukyanov, S., and Lukyanov, K.A. 2003. A colorless green fluorescent protein homologue from the non‐fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem. J. 373:403‐408.
   Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, S., and Lukyanov, K.A. 2006. Engineering of a monomeric green‐to‐red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461‐465.
   Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., and Hofkens, J. 2005. Reversible single‐molecule photoswitching in the GFP‐like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. U.S.A. 102:9511‐9516.
   Heim, R. and Tsien, R.Y. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6:178‐182.
   Heim, R., Prasher, D.C., and Tsien, R.Y. 1994. Wavelength mutations and post‐translational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 91:12501‐12504.
   Heim, R., Cubitt, A.B., and Tsien, R.Y. 1995. Improved green fluorescence. Nature 373:663‐664.
   Ip., D.T.M., Chan, S.H., Allen, M.D., Bycroft, M., Wan, D.C.C., and Wong, K.B. 2004. Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from the Cnidaria tube anemone Cerianthus sp. Acta Crystallog. D: Biol. Crystallog. D60:340‐341.
   Ivanchenko, S., Roecker, C., Oswald, F., Wiedenmann, J., and Nienhaus, G.U. 2005. Targeted green‐red photoconversion of EosFP, a fluorescent marker protein. J. Biol. Phys. 31:249‐259.
   Jayaraman, S., Haggie, P., Wachter, R.M., Remington, S.J., and Verkman, A.S. 2000. Mechanism and cellular applications of green fluorescent protein‐based halide sensor. J. Biol. Chem. 275:6047‐6050.
   Jung, G., Wiehler, J., and Zumbusch, A. 2005. The photophysics of green fluorescent protein: Influence of the key amino acids at positions 65, 203, and 222. Biophys. J. 88:1932‐1947.
   Kajihara, D., Hohsaka, T., and Sisido, M. 2005. Synthesis and sequence optimization of GFP mutants containing aromatic non‐natural amino acids at the Tyr66 position. Prot. Engineer. Design Select. 18:273‐278.
   Karasawa, S., Araki, T., Yamamoto‐Hino, M., and Miyawaki, A. 2003. A green‐emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J. Biol. Chem. 278:34167‐34171.
   Karasawa, S., Araki, T., Nagi, T., Mizuno, H., and Miyawaki, A. 2004. Cyan‐emitting and orange‐emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381:307‐312.
   Khodjakov, A. and Rieder, C.L. 2006. Imaging the division process in living tissue culture cells. Methods 38:2‐16.
   Kuner, T. and Augustine, G.J. 2000. A genetically encoded ratiometric neurotechnique indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron 27:447‐459.
   Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A., and Matz, M.V. 2002. Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. U.S.A. 99:4256‐4261.
   Lauf, U., Lopez, P., and Falk, M.M. 2001. Expression of fluorescently tagged connexins: A novel approach to rescue function of oligomeric DsRed‐tagged proteins. FEBS Lett. 498:11‐15.
   Lippincott‐Schwartz, J. and Patterson, G.H. 2003. Development and use of fluorescent markers in living cells. Science 300:87‐91.
   Lippincott‐Schwartz, J., Altan‐Bonnet, N., and Patterson, G.H. 2003. Photobleaching and photoactivation: Following protein dynamics in living cells. Nat. Cell Biol. 5:S7‐S14.
   Llopis, J., McCaffery, J.M., Miyawaki, A., Farquhar, M.G., and Tsien, R.Y. 1998. Measurement of cytosolic, mitochondria, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 95:6803‐6808.
   Llopis, J., Westin, S., Ricote, M., Wang, J., Cho, C.Y., Kurokwa, R., Mullen, T.M., Rose, D.W., Rosenfeld, M.G., Tsien, R.Y., and Glass, C.K. 2000. Ligand‐dependent interactions of coactivators steroid receptor coactivator‐1 and peroxisome proliferator‐activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc. Natl. Acad. Sci. U.S.A. 97:4363‐4368.
   Lucius, R., Mentlein, R., and Sievers, J. 1998. Riboflavin‐mediated axonal degeneration of postnatal retinal ganglion cells in vitro is related to the formation of free radicals. Free Rad. Biol. Med. 24:798‐808.
   Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A., Savitsky, A.P., Markelov, M.L., Zaraisky, A.G., Zhao, X., Fang, Y., Tan, W., and Lukyanov, S. A. 2000. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275:25879‐25882.
   Lukyanov, K.A., Chudakov, D.M., Lukyanov, S., and Verkhusha, V.V. 2005. Innovation: Photoactivatable fluorescent proteins. Nat. Rev. Molec. Cell Biol. 6:885‐891.
   Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17:969‐973.
   McAnaney, T. B., Zeng, W., Doe, C.F.E., Bhanji, N., Wakelin, S., Pearson, D.S., Abbyad, P., Shi, X., Boxer, S.G., and Bagshaw, C.R. 2005. Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): A unifying mechanism. Biochemistry 44:5510‐5524.
   Meyer, T. and Teruel, M.N. 2003. Fluorescence imaging of signaling networks. Trends Cell Biol. 13:101‐106.
   Minamikawa, T., Sriratana, A., Williams, D.A., Bowser, D.N., Hill, J.S., and Nagley, P. 1999. Chloromethyl‐X‐rosamine (MitoTracker Red) photosensitizes mitochondria and induces apoptosis in intact human cells. J. Cell Sci. 112:2419‐2430.
   Mitra, R.D., Silva, C.M., and Youvan, D.C. 1996. Fluorescence resonance energy transfer between blue‐emitting and red‐shifted excitation derivatives of the green fluorescent protein. Gene 173:13‐17.
   Miyawaki, A. 2002. Green fluorescent protein‐like proteins in reef Anthozoa animals. Cell Struct. Funct. 27:343‐347.
   Miyawaki, A. 2003. Fluorescence imaging of physiological activity in complex systems using GFP‐based probes. Curr. Opin. Neurobiol. 13:591‐596.
   Miyawaki, A. 2004. Fluorescent proteins in a new light Nat. Biotechnol. 22:1374‐1376.
   Miyawaki, A. 2005. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189‐199.
   Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y. 1997. Fluorescent indicators for calcium based on green fluorescent proteins and calmodulin. Nature 388:882‐887.
   Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R.Y. 1999. Dyanmic and quantitative calcium measurements using improved cameleons. Proc. Natl. Acad. Sci. U.S.A. 96:2135‐2140.
   Miyawaki, A., Nagai, T., and Mizuno, H. 2005. Engineering fluorescent proteins. Adv. Biochem. Engineer. Biotechnol. 95:1‐15.
   Mizuno, H., Swano, A., Eli, P., Hama, H., and Miyawaki, A. 2001. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry 40:2502‐2510.
   Mizuno, H., Mal, T.K., Tong, K.I., Ando, R., Furuta, T., Ikura, M., and Miyawaki, A. 2003. Photo‐induced peptide cleavage in the green‐to‐red conversion of a fluorescent protein. Molec. Cell 12:1051‐1058.
   Morin, J.G. and Hastings, J.W. 1971a. Energy transfer in a bioluminescent system. J. Cell. Physiol. 77:313‐318.
   Morin, J.G. and Hastings, J.W. 1971b. Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J. Cell. Physiol. 77:305‐312.
   Nagai, T. and Miyawaki, A. 2004. A high‐throughput method for development of FRET‐based indicators for proteolysis. Biochem. Biophys. Res. Commun. 319:72‐77.
   Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell‐biological applications. Nat. Biotechnol. 20:87‐90.
   Nguyen, A.W. and Daugherty, P.S. 2005. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23:355‐360.
   Nienhaus, K., Nienhaus, G.U., Wiedenmann, J., and Nar, H. 2005. Structural basis for photo‐induced protein cleavage and green to red conversion of fluorescent protein EosFP. Proc. Natl. Acad. Sci. U.S.A. 102:9156‐9159.
   Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392‐1395.
   Pakhomov, A.A., Martynova, N.Y., Gurskaya, N.G., Balashova, T.A., and Martynov, V.I. 2004. Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp. Biochemistry (Moscow) 69:901‐908.
   Patterson, G.H. 2004. A new harvest of fluorescent proteins. Nat. Biotechnol. 22:1524‐1525.
   Patterson, G.H. and Lippincott‐Schwartz, J. 2002a. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873‐1877.
   Patterson, G.H. and Lippincott‐Schwartz, J. 2002b. Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445‐450.
   Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W. 1997. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73:2782‐2790.
   Patterson, G.H., Piston, D.W., and Barisas, B.G. 2000. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284:438‐440.
   Patterson, G.H., Day, R.N., and Piston, D.W. 2001. Fluorescent protein spectra. J. Cell Sci. 114:837‐838.
   Periasamy, A. and Day, R.N. 1998. FRET imaging of Pit‐1 protein interactions in living cells. J. Biomed. Optics 3:154‐160.
   Peterson, J., Wilmann, P.G., Beddoe, T., Oakley, A.J., Devenish, R.J., Prescott, M., and Rossjohn, J. 2003. The 2.0‐Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J. Biol. Chem. 278:44626‐44631.
   Phillips, G.N. 2006. The three‐dimensional structure of green fluorescent protein and its implications for function and design. In Green Fluorescent Protein: Properties, Applications, and Protocols, 2nd ed. (M. Chalfie and S.R. Kain, eds.) pp. 67‐82. John Wiley & Sons, Hoboken, N.J.
   Potter, S.M. 1996. Vital imaging: Two photons are better than one. Curr. Biol. 6:1595‐1598.
   Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J. 1992. Primary structure of the Aequorea victoria green‐fluorescent protein. Gene 111:229‐233.
   Prescott, M., Battad, J.M., Wilmann, P.G., Rossjohn, J., and Devenish, R.J. 2006. Recent advances in all‐protein chromophore technology. Biotechnol. Annu. Rev. 12:31‐66.
   Rajfur, Z., Roy, P., Otey, C., Romer, L., and Jacobson, K. 2002. Dissecting the link between stress fibers and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4:286‐293.
   Rehm, M., Duessmann, H., Jaenicke, R.U., Tavare, J. M., Koegel, D., and Prehn, J.H.M. 2002. Single‐cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. J. Biol. Chem. 277:24506‐24514.
   Remington, S.J. 2006. Fluorescent proteins: maturation, photochemistry, and photophysics. Curr. Opin. Struct. Biol. 16 (in press) doi: 10.1016/j.sbi.2006.10.001
   Remington, S.J., Wachter, R.M., Yarbrough, D.K., Branchaud, B., Anderson, D.C., Kallio, K., and Lukyanov, K.A. 2005. zFP538, a yellow‐fluorescent protein from Zoanthus, contains a novel three‐ring chromophore. Biochemistry 44:202‐212.
   Richards, B., Zharkikh, L., Hsu, F., Dunn, C., Kamb, A., and Teng, D.H. 2002. Stable expression of Anthozoa fluorescent proteins in mammalian cells. Cytometry 48:106‐112.
   Rizzo, M.A. and Piston, D.W. 2005a. Fluorescent protein tracking and detection. In Live Cell Imaging: A Laboratory Manual (R.D. Goldman and D.L. Spector, eds.) pp. 3‐23. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
   Rizzo, M.A. and Piston, D.W. 2005b. High‐contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J. 88:L14‐L16.
   Rizzo, M.A., Magnuson, M.A., Drain, P.F., and Piston, D.W. 2002. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J. Biol. Chem. 277:34168‐34175.
   Rizzo, M.A., Springer, G.H., Granada, B., and Piston, D.W. 2004. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22:445‐449.
   Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Hein, R., Tsien, R.Y., and Pozzan, T. 1996. Double labeling of subcellular structures with organelle‐targeted GFP mutants in vivo. Curr. Biol. 6:183‐188.
   Romoser, V.A., Hinkle, P.M., and Persechini, A. 1997. Detection in living cells of calcium‐dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin‐binding sequence. J. Biol. Chem. 272:13270‐13274.
   Salih, A., Larkum, A., Cox, G., Kuhl, M., and Hoegh‐Buldberg, O. 2000. Fluorescent pigments in corals are photoprotective. Nature 408:850‐853.
   Schenk, A., Ivanchenko, S., Roecker, C., Wiedenmann, J., and Nienhaus, G.U. 2004. Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys. J. 86:384‐394.
   Shagin, D.A., Barsova, E.V., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Labas, Y.A., Semenova, T.N., Ugalde, J.A., Meyers, A., Nunez, J.M., Widder, E.A., Lukyanov, S.A., and Matz, M.V. 2004. GFP‐like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molec. Biol. Evol. 21:841‐850.
   Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., and Tsien, R.Y. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567‐1572.
   Shaner, N.C., Steinbach, P.A., and Tsien, R.Y. 2005. A guide to choosing fluorescent proteins. Nat. Methods. 2:905‐909.
   Sheff, M.A. and Thorn, K.S. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661‐670.
   Sheridan, D.L. and Hughes, T.E. 2004. A faster way to make GFP‐based biosensors: Two new transposons for creating multicolored libraries of fluorescent fusion proteins. BMC Biotechnol. 4:1‐17.
   Shimomura, O., Johnson, F.H., and Saiga, Y. 1962. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59:223‐239.
   Shkrob, M.A., Yanushevich, Y.G., Chudakov, D.M., Gurskaya, N.G., Labas, Y.A., Poponov, S.Y., Mudrik, N.N., Lukyanov, S., and Lukyanov, K.A. 2005. Far‐red fluorescent proteins evolved from a blue chromoprotein from Actinia equine. Biochem. J. 392:649‐654.
   Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y., and Remington, S.J. 2006. Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647.
   Shyu, Y.J., Liu, H., Deng, X., and Hu, C.D. 2006. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40:61‐66.
   Silva, E., Salim‐Hanna, M., Edwards, A.M., Becker, M.I., and De Ioannes, AE. 1991. A light‐induced tryptophan‐riboflavin binding: Biological implications. Adv. Exp. Med. Biol. 289:33‐48.
   Spierenburg, G.T., Oerlemans, F.T., van Laarhoven, J.P., and de Bruyn, C.H. 1984. Phototoxicity of N‐2‐hydroxyethylpiperazine‐N′‐2‐ethanesulfonic acid‐buffered culture media for human leukemic cell lines. Cancer Res. 44:2253‐2254.
   Stephens, D.J. and Allan, V.J. 2003. Light microscopy techniques for live cell imaging. Science 300:82‐86.
   Sturman, D.A., Shakiryanova, D., Hewes, R., Deitcher, D., and Levitan, E.S. 2006. Nearly neutral secretory vesicles in Drosophila nerve terminals. Biophys. J. 90:L45‐L47.
   Swedlow, J.R., Hu, K., Andrews, P.K., Roos, D.S., and Murray, J.M. 2002. Measuring tubulin content in Toxoplasma gondii: A comparison of laser‐scanning confocal and wide‐field fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 99:2014‐2019.
   Tavare, J.M., Fletcher, L.M., and Welsh, G.I. 2001. Using green fluorescent protein to study intracellular signalling. J. Endocrinol. 70:297‐306.
   Ting, A.Y., Kain, K.H., Klemke, R.L., and Tsien, R.Y. 2001. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. U.S.A. 98:15003‐15008.
   Tinnefeld, P. and Sauer, M. 2005. Branching out of single‐molecule fluorescence spectroscopy: Challenges for chemistry and influence on biology. Angewandte Chemie 44:2642‐2671.
   Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R., and Tsien, R.Y. 2003. Genetically targeted chromophore‐assisted light inactivation. Nat. Biotechnol. 21:1505‐1508.
   Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509‐544.
   Tsien, R.Y. 2005. Building and breeding molecules to spy on cells and tumors FEBS Lett. 579:927‐932.
   Tsuboi, T. and Rutter, G.A. 2003. Insulin secretion by “kiss‐and‐run” exocytosis in clonal pancreatic islet beta‐cells. Biochem. Soc. Trans. 31:833‐836.
   Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N., and Miyawaki, A. 2005. Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Reports 6:233‐238.
   Verkhusha, V.V. and Lukyanov, K.A. 2004. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol. 22:289‐296.
   Verkhusha, V.V. and Sorkin, A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12:279‐285.
   Vrzheshch, P.V., Akovbian, N.A., Varfolomeyev, S.D., and Verkhusha, V.V. 2000. Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions. FEBS Lett. 487:203‐208.
   Wachter, R.M., Elsliger, M.A., Kallio, K., Hanson, G.T., and Remington, S.J. 1998. Structural basis of spectral shifts in the yellow‐emission variants of green fluorescent protein. Structure 6:1267‐1277.
   Wallrabe, H. and Periasamy, A. 2005. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16:19‐27.
   Wang, L., Jackson, W.C., Steinbach, P.A., and Tsien, R.Y. 2004. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. U.S.A. 101:16745‐16749.
   Ward, W.W. 2006. Biochemical and physical properties of green fluorescent protein. In Green Fluorescent Protein: Properties, Applications, and Protocols, 2nd ed. (M. Chalfie and S.R. Kain, eds.) pp. 39‐65. John Wiley & Sons, Hoboken, N.J..
   Ward, W.W. and Cormier, M.J. 1979. An energy transfer protein in coelenterate bioluminescence: Characterization of the Renilla green‐fluorescent protein (GFP), J. Biol. Chem. 254:781‐788.
   Wiedenmann, J., Schenk, A., Roecker, C., Girod, A., Spindler, K.D., and Nienhaus, G.U. 2002. A far‐red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. U.S.A. 99:11646‐11651.
   Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K., and Nienhaus, G.U. 2004. EosFP, a fluorescent marker protein with UV‐inducible green‐to‐red fluorescence conversion. Proc. Natl. Acad. Sci. U.S.A. 101:15905‐15910.
   Wiedenmann, J., Vallone, B., Renzi, F., Nienhaus, K., Ivanchenko, S., Roecker, C., and Nienhaus, G.U. 2005. Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. J. Biomed. Optics 10:1‐7.
   Wiehler, J., von Hummel, J., and Steipe, B. 2001. Mutants of Discosoma red fluorescent protein with a GFP‐like chromophore. FEBS Lett. 487:384‐389.
   Yang, T.T., Sinai, P., Green, G., Kitts, P.A., Chen, Y.T., Lybarger, L., Cervenak, R., Patterson, G.H., Piston, D.W., and Kain, S.R. 1998. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J. Biol. Chem. 273:8212‐8216.
   Yanushevich, Y.G., Staroverov, D.B., Savitsky, A.P., Fradkov, A.F., Gurskaya, N.G., Bulina, M.E., Lukyanov, K.A., and Lukyanov, S.A. 2002. A strategy for the generation of non‐aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511:11‐14.
   Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V., and Remington, S.J. 2001. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 98:462‐467.
   Zaccolo, M. 2004. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ. Res. 94:866‐873.
   Zacharias, D.A. 2002. Sticky caveats in an otherwise glowing report: Oligomerizing fluorescent proteins and their use in cell biology. Science STKE 131:pe23.
   Zacharias, D.A. and Tsien, R.Y. 2006. Molecular biology and mutation of green fluorescent protein. In Green Fluorescent Protein: Properties, Applications, and Protocols, 2nd ed. (M. Chalfie and S. R. Kain, eds.) pp. 83‐120. John Wiley & Sons, Hoboken, N.J.
   Zacharias, D.A., Violin, J.D., Newton, A.C., and Tsien, R.Y. 2002. Partitioning of lipid‐modified monomeric GFPs into membrane microdomains of live cells. Science 296:913‐916.
   Zagranichny, V.E., Rudenko, N.V., Gorokhovatsky, A.Y., Zakharov, M.V., Shenkarev, Z.O., Balashova, T.A., and Arseniev, A.S. 2004. zFP538, a yellow fluorescent protein from coral, belongs to the DsRed subfamily of GFP‐like proteins but possesses the unexpected site of fragmentation. Biochemistry 43:4764‐4772.
   Zapata‐Hommer, O. and Griesbeck, O. 2003. Efficiently folding and circular permuted variants of the Sapphire mutant of GFP. BMC Biotechnol. 3:5‐11.
   Zhang, J., Ma, Y., Taylor, S.S., and Tsien, R.Y. 2001. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. U.S.A. 98:14997‐15002.
   Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y. 2002. Creating new fluorescent probes for cell biology. Nat. Rev. Molec. Cell Biol. 3:906‐918.
   Zimmer, M. 2002. Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chem. Rev. 102:759‐781.
   Zumbusch, A. and Jung, G. 2000. Single molecule spectroscopy of the green fluorescent protein: A critical assessment. Single Molecules 1:261‐270.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library