Scoring and Manipulating Gene Position and Dynamics Using FROS in Budding Yeast

Isabelle Loïodice1, Marion Dubarry2, Angela Taddei1

1 Université Pierre-et-Marie-Curie (UPMC), UMR 3664, Paris, 2 Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 22.17
DOI:  10.1002/0471143030.cb2217s62
Online Posting Date:  March, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The spatial organization of the genome within the nucleus is now seen as a key contributor to genome function. Studying chromatin dynamics in living cells has been rendered possible by the development of fast microscopy coupled with fluorescent repressor operator systems (FROS). In these systems, arrays of protein‐binding sites integrated at specific loci by homologous recombination are monitored through the fluorescence of tagged DNA‐binding proteins. In the budding yeast, where homologous recombination is efficient, this technique, combined with targeting assay and genetic analysis, has been extremely powerful for studying the determinants and function of chromatin dynamics in living cells. However, issues have been recurrently raised in different species regarding the use of these systems. Here we discuss the different uses of gene tagging with FROS and their limitations, focusing in budding yeast as a model organism. Curr. Protoc. Cell Biol. 62:22.17.1‐22.17.14. © 2014 by John Wiley & Sons, Inc.

Keywords: FROS; lacO; tetO; nuclear organization; Saccharomyses cerevisiae

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • FROS Generalities
  • Description of Commonly Used FROS
  • Conclusion
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Adams, I.R. and Kilmartin, J.V. 1999. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145:809‐823.
  Andrulis, E.D., Neiman, A.M., Zappulla, D.C., and Sternglanz, R. 1998. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394:592‐595.
  Aragon‐Alcaide, L. and Strunnikov, A.V. 2000. Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Nat. Cell Biol. 2:812‐818.
  Bickmore, W.A. and van Steensel, B. 2013. Genome architecture: Domain organization of interphase chromosomes. Cell 152:1270‐1284.
  Brickner, J.H. and Walter, P. 2004. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2:e342.
  Carmi, I., Kopczynski, J.B., and Meyer, B.J. 1998. The nuclear hormone receptor SEX‐1 is an X‐chromosome signal that determines nematode sex. Nature 396:168‐173.
  Chen, J. and Matthews, K.S. 1992. Deletion of lactose repressor carboxyl‐terminal domain affects tetramer formation. J. Biol. Chem. 267:13843‐13850.
  Dion, V., Kalck, V., Horigome, C., Towbin, B.D., and Gasser, S.M. 2012. Increased mobility of double‐strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14:502‐509.
  Dubarry, M., Loiodice, I., Chen, C.L., Thermes, C., and Taddei, A. 2011. Tight protein‐DNA interactions favor gene silencing. Genes Dev. 25:1365‐1370.
  Dubarry, N., Pasta, F., and Lane, D. 2006. ParABS systems of the four replicons of Burkholderia cenocepacia: New chromosome centromeres confer partition specificity. J. Bacteriol. 188:1489‐1496.
  Ebrahimi, H., Robertson, E.D., Taddei, A., Gasser, S.M., Donaldson, A.D., and Hiraga, S.I. 2010. Early initiation of a replication origin tethered at the nuclear periphery. J. Cell Sci. 123:1015‐1019.
  Falcon, C.M. and Matthews, K.S. 1999. Glycine insertion in the hinge region of lactose repressor protein alters DNA binding. J. Biol. Chem. 274:30849‐30857.
  Fekete, R.A. and Chattoraj, D.K. 2005. A cis‐acting sequence involved in chromosome segregation in Escherichia coli. Mol. Microbiol. 55:175‐183.
  Fuchs, J., Lorenz, A., and Loidl, J. 2002. Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes. J. Cell Sci. 115:1213‐1220.
  Gartenberg, M.R., Neumann, F.R., Laroche, T., Blaszczyk, M., and Gasser, S.M. 2004. Sir‐mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119:955‐967.
  Gehlen, L.R., Nagai, S., Shimada, K., Meister, P., Taddei, A., and Gasser, S.M. 2011. Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr. Biol. 21:25‐33.
  He, X., Asthana, S., and Sorger, P.K. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763‐775.
  Heun, P., Laroche, T., Shimada, K., Furrer, P., and Gasser, S.M. 2001. Chromosome dynamics in the yeast interphase nucleus. Science 294:2181‐2186.
  Hubner, M.R. and Spector, D.L. 2010. Chromatin dynamics. Annu. Rev. Biophys. 39:471‐489.
  Jacome, A. and Fernandez‐Capetillo, O. 2011. Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep. 12:1032‐1038.
  Jegou, T., Chung, I., Heuvelman, G., Wachsmuth, M., Gorisch, S.M., Greulich‐Bode, K.M., Boukamp, P., Lichter, P., and Rippe, K. 2009. Dynamics of telomeres and promyelocytic leukemia nuclear bodies in a telomerase‐negative human cell line. Mol. Biol. Cell 20:2070‐2082.
  Kamionka, A., Bogdanska‐Urbaniak, J., Scholz, O., and Hillen, W. 2004. Two mutations in the tetracycline repressor change the inducer anhydrotetracycline to a corepressor. Nucleic Acids Res. 32:842‐847.
  Kitamura, E., Blow, J.J., and Tanaka, T.U. 2006. Live‐cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125:1297‐1308.
  Lassadi, I. and Bystricky, K. 2011. Tracking of single and multiple genomic loci in living yeast cells. Methods Mol. Biol. 745:499‐522.
  Lau, I.F., Filipe, S.R., Soballe, B., Okstad, O.A., Barre, F.X., and Sherratt, D.J. 2003. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49:731‐743.
  Lewis, M. 2005. The lac repressor. C. R. Biol. 328:521‐548.
  Li, Y. and Austin, S. 2002. The P1 plasmid is segregated to daughter cells by a ‘capture and ejection' mechanism coordinated with Escherichia coli cell division. Mol. Microbiol. 46:63‐74.
  Maillet, L., Gaden, F., Brevet, V., Fourel, G., Martin, S.G., Dubrana, K., Gasser, S.M., and Gilson, E. 2001. Ku‐deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep. 2:203‐210.
  Meister, P., Gehlen, L.R., Kalck, V., and Gasser, S.M. 2010. Visualizing yeast chromosomes and nuclear architecture. Methods Enzymol. 470:535‐567.
  Meister, P. and Taddei, A. 2013. Building silent compartments at nuclear periphery: A recurrent theme. Curr. Opin. Genet. Dev. 23:96‐103.
  Michaelis, C., Ciosk, R., and Nasmyth, K. 1997. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35‐45.
  Mine‐Hattab, J. and Rothstein, R. 2012. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14:510‐517.
  Moazed, D., Rudner, A.D., Huang, J., Hoppe, G.J., and Tanny, J.C. 2004. A model for step‐wise assembly of heterochromatin in yeast. Novartis Found. Symp. 259:48‐56; discussion 56‐62, 163‐169.
  Nagai, S., Heun, P., and Gasser, S.M. 2010. Roles for nuclear organization in the maintenance of genome stability. Epigenomics 2:289‐305.
  Neumann, F.R., Dion, V., Gehlen, L.R., Tsai‐Pflugfelder, M., Schmid, R., Taddei, A., and Gasser, S.M. 2012. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26:369‐383.
  Parada, L.A., McQueen, P.G., Munson, P.J., and Misteli, T. 2002. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol. 12:1692‐1697.
  Pecinka, A., Kato, N., Meister, A., Probst, A.V., Schubert, I., and Lam, E. 2005. Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J. Cell Sci. 118:3751‐3758.
  Possoz, C., Filipe, S.R., Grainge, I., and Sherratt, D.J. 2006. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor‐bound DNA in vivo. EMBO J. 25:2596‐2604.
  Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A.S. 1996. In vivo localization of DNA sequences and visualization of large‐scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685‐1700.
  Rohner, S., Gasser, S.M., and Meister, P. 2008. Modules for cloning‐free chromatin tagging in Saccharomyces cerevisiae. Yeast 25:235‐239.
  Rusche, L.N., Kirchmaier, A.L., and Rine, J. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72:481‐516.
  Schmitz, A., Coulondre, C., and Miller, J.H. 1978. Genetic studies of the lac repressor. V. Repressors which bind operator more tightly generated by suppression and reversion of nonsense mutations. J. Mol. Biol. 123:431‐454.
  Sofueva, S., Osman, F., Lorenz, A., Steinacher, R., Castagnetti, S., Ledesma, J., and Whitby, M.C. 2011. Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic Acids Res. 39:6568‐6584.
  Spotts, R.O., Chakerian, A.E., and Matthews, K.S. 1991. Arginine 197 of lac repressor contributes significant energy to inducer binding. Confirmation of homology to periplasmic sugar binding proteins. J. Biol. Chem. 266:22998‐23002.
  Straight, A.F., Belmont, A.S., Robinett, C.C., and Murray, A.W. 1996. GFP tagging of budding yeast chromosomes reveals that protein‐protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599‐1608.
  Taddei, A. 2007. Active genes at the nuclear pore complex. Curr. Opin. Cell Biol. 19:305‐310.
  Taddei, A. and Gasser, S.M. 2012. Structure and function in the budding yeast nucleus. Genetics 192:107‐129.
  Taddei, A., Hediger, F., Neumann, F.R., Bauer, C., and Gasser, S.M. 2004. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23:1301‐1312.
  Taddei, A., Schober, H., and Gasser, S.M. 2010. The budding yeast nucleus. Cold Spring Harb. Perspect. Biol. 2:a000612.
  Therizols, P., Fairhead, C., Cabal, G.G., Genovesio, A., Olivo‐Marin, J.C., Dujon, B., and Fabre, E. 2006. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172:189‐199.
  Therizols, P., Duong, T., Dujon, B., Zimmer, C., and Fabre, E. 2010. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc. Natl. Acad. Sci. U.S.A. 107:2025‐2030.
  Vazquez, J., Belmont, A.S., and Sedat, J.W. 2001. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11:1227‐1239.
  Webb, C.D., Teleman, A., Gordon, S., Straight, A., Belmont, A., Lin, D.C., Grossman, A.D., Wright, A., and Losick, R. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88:667‐674.
  Yoshida, T., Shimada, K., Oma, Y., Kalck, V., Akimura, K., Taddei, A., Iwahashi, H., Kugou, K., Ohta, K., Gasser, S.M., and Harata, M. 2010. Actin‐related protein Arp6 influences H2A.Z‐dependent and ‐independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet. 6:e1000910.
PDF or HTML at Wiley Online Library