Expanding Mouse Ventricular Cardiomyocytes Through GSK‐3 Inhibition

Jan W. Buikema1, Peter‐Paul M. Zwetsloot1, Pieter A. Doevendans1, Joost P.G. Sluijter1, Ibrahim J. Domian2

1 Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands, 2 Harvard Stem Cell Institute, Cambridge, Massachusetts
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 23.9
DOI:  10.1002/0471143030.cb2309s61
Online Posting Date:  December, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Controlled proliferation of cardiomyocytes remains a major limitation in cell biology and one of the main underlying hurdles for true modern regenerative medicine. Here, a technique is described for robust expansion of early fetal‐derived mouse ventricular cardiomyocytes on a platform usable for high‐throughput molecular screening, tissue engineering and, potentially, in vivo translational experiments. This method provides a small‐molecule approach to control proliferation or differentiation of early beating cardiomyocytes through modulation of the Wnt/β‐catenin signaling pathway. Moreover, isolation and expansion of fetal cardiomyocytes takes less than 3 weeks, yields a relatively pure (∼70%) functional myogenic population, and is highly reproducible. Curr. Protoc. Cell Biol. 61:23.9.1‐23.9.10. © 2013 by John Wiley & Sons, Inc.

Keywords: cardiomyocyte proliferation; differentiation; isolation; expansion; GSK‐3 inhibitor; Wnt/β‐catenin signaling

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation of Fetal Ventricular Cardiomyocytes
  • Basic Protocol 2: Two‐Dimensional Culture of Fetal Ventricular Cardiomyocytes
  • Alternate Protocol 1: Three‐Dimensional Culture of Fetal Ventricular Cardiomyocytes
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Isolation of Fetal Ventricular Cardiomyocytes

  • Pregnant C57BL/6 or CD1 mouse, E11.5 to E14.5
  • 1× phosphate‐buffered saline (PBS), sterile and ice cold
  • Collagenase digestion solution (see recipe)
  • 0.25% trypsin/EDTA (Invitrogen, cat. no. 25200‐056)
  • Fetal bovine serum (FBS; Gemini Bioproducts, cat. no. 100‐500)
  • Cardiomyocyte culture medium (see recipe)
  • Scissors
  • Forceps
  • 10‐cm cell culture dish
  • Scalpel
  • 15‐ml centrifuge tubes (BD, cat. no. 352097)
  • 37°C water bath
  • Additional reagents and equipment for counting cells (unit )

Basic Protocol 2: Two‐Dimensional Culture of Fetal Ventricular Cardiomyocytes

  • 0.1% (w/v) gelatin (Sigma, cat. no. G1890) in phosphate‐buffered saline (PBS)
  • Cardiomyocyte culture medium (see recipe)
  • 10 mM 6‐bromoindirubin‐3′‐oxime (BIO, a GSK‐3 inhibitor; Sigma, cat. no. B1686) in DMSO (store up to 1 year at −80°C)
  • 10 mM inhibitor of Wnt response‐1 (IWR, an Axin inhibitor; Sigma, cat. no. I0161) in DMSO (store up to 1 year at −80°C)
  • Dimethyl sulfoxide (DMSO)
  • 4% paraformaldehyde (PFA) solution
  • Primary antibodies against:
    • Cardiac troponin T (cTnT, mouse monoclonal, NeoMarkers, Ms‐295, 0.2 mg/ml, 1:250)
    • Ki67 (rabbit monoclonal, Abcam, cat. no. 16667, 1 mg/ml, 1:300)
    • α‐Sarcomeric actinin (α‐SA, mouse monoclonal, Sigma, cat. no. A7811, 1 mg/ml, 1:250)
    • Connexin‐43 (Cx43, rabbit polyclonal, Sigma, cat. no. C6219, 1 mg/ml, 1:150)
  • Secondary antibodies:
    • Donkey anti‐mouse, Alexa 488 (Invitrogen, cat. no. A‐21202, 1:400)
    • Donkey anti‐rabbit, Alexa 594 (Invitrogen, cat. no. A‐21206, 1:400)
  • Saponin (Sigma, cat. no. 47036)
  • 4′,6‐Diamidino‐2‐phenylindole, dihydrochloride (DAPI, Invitrogen, cat. no. D1306, 1:10,000)
  • TRIzol reagent (Invitrogen, cat. no. 15596‐026)
  • Qiagen RNeasy Mini Kit (Qiagen, cat. no. 74104)
  • iScript cDNA Synthesis Kit (Bio‐Rad, cat. no. 170‐8891)
  • 24‐, 96‐, or 384‐well cell culture plate(s)
  • 37°C/5% CO 2 culture incubator
PDF or HTML at Wiley Online Library



Literature Cited

   Akins, R.E. , Boyce, R.A. , Madonna, M.L. , Schroedl, N.A. , Gonda, S.R. , McLaughlin, T.A. , and Hartzell, C.R. 1999. Cardiac organogenesis in vitro: Reestablishment of three‐dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 5:103‐118.
   Buckingham, M. , Meilhac, S. , and Zaffran, S. 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6:826‐835.
   Buikema, J.W. , Mady, A.S. , Mittal, N.V. , Atmanli, A. , Caron, L. , Doevendans, P.A. , Sluijter, J.P. , and Domian, I.J. 2013a. Wnt/β‐catenin signaling directs the regional expansion of first and second heart field‐derived ventricular cardiomyocytes. Development 140:4165‐4176.
   Buikema, J. , van der Meer, P. , Sluijter, J.P. , and Domian, I.J. 2013b. Engineering myocardial tissue: The convergence of stem cells biology and tissue engineering technology. Stem Cells doi:10.1002/stem.1467 [Epub ahead of print].
   Bursac, N. , Papadaki, M. , White, J.A. , Eisenberg, S.R. , Vunjak‐Novakovic, G. , and Freed, L.E. 2003. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9:1243‐1253.
   Cai, C.L. , Liang, X. , Shi, Y. , Chu, P.H. , Pfaff, S.L. , Chen, J. , and Evans, S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5:877‐889.
   Chen, B. , Dodge, M.E. , Tang, W. , Lu, J. , Ma, Z. , Fan, C.W. , Wei, S. , Hao, W. , Kilgore, J. , Williams, N.S. , Roth, M.G. , Amatruda, J.F. , Chen, C. , and Lum, L. 2009. Small molecule‐mediated disruption of Wnt‐dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5:100‐107.
   Domian, I.J. , Chiravuri, M. , van der Meer, P. , Feinberg, A.W. , Shi, X. , Shao, Y. , Wu, S.M. , Parker, K.K. , and Chien, K.R. 2009. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326:426‐429.
   Eulalio, A. , Mano, M. , Dal Ferro, M. , Zentilin, L. , Sinagra, G. , Zacchigna, S. , and Giacca, M. 2012. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376‐381.
   Jopling, C. , Sleep, E. , Raya, M. , Marti, M. , Raya, A. , and Izpisua Belmonte, J.C. 2010. Zebrafish heart regeneration occurs bycardiomyocyte dedifferentiation and proliferation. Nature 464:606‐609.
   Kikuchi, K. , Holdway, J.E. , Werdich, A.A. , Anderson, R.M. , Fang, Y. , Egnaczyk, G.F. , Evans, T. , Macrae, C.A. , Stainier, D.Y. , and Poss, K.D. 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464 601‐605.
   Kunick, C. , Lauenroth, K. , Leost, M. , Meijer, L. , and Lemcke, T. 2004. 1‐Azakenpaullone is a selective inhibitor of glycogen synthase kinase‐3 beta. Bioorg. Med. Chem. Lett. 14:413‐416.
   Kwon, C. , Arnold, J. , Hsiao, E.C. , Taketo, M.M. , Conklin, B.R. , and Srivastava, D. 2007. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc. Natl. Acad. Sci. U.S.A. 104:10894‐10899.
   Laugwitz, K.L. , Moretti, A. , Lam, J. , Gruber, P. , Chen, Y. , Woodard, S. , Lin, L.Z. , Cai, C.L. , Lu, M.M. , Reth, M. , Platoshyn, O. , Yuan, J.X. , Evans, S. , and Chien, K.R. 2005. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647‐653.
   Lin, L. , Cui, L. , Zhou, W. , Dufort, D. , Zhang, X. , Cai, C.L. , Bu, L. , Yang, L. , Martin, J. , Kemler, R. , Rosenfeld, M.G. , Chen, J. , and Evans, S.M. 2007. Beta‐catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl. Acad. Sci. U.S.A. 104:9313‐9318.
   Lu, J. , Ma, Z. , Hsieh, J.C. , Fan, C.W. , Chen, B. , Longgood, J.C. , Williams, N.S. , Amatruda, J.F. , Lum, L. , and Chen, C. 2009. Structure‐activity relationship studies of small‐molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett. 19:3825‐3827.
   Meijer, L. , Skaltsounis, A.L. , Magiatis, P. , Polychronopoulos, P. , Knockaert, M. , Leost, M. , Ryan, X.P. , Vonica, C.A. , Brivanlou, A. , Dajani, R. , Crovace, C. , Tarricone, C. , Musacchio, A. , Roe, S.M. , Pearl, L. , and Greengard, P. 2003. GSK‐3‐selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10:1255‐1266.
   Moorman, A.F. and Christoffels, V.M. 2003. Cardiac chamber formation: Development, genes, and evolution. Physiol. Rev. 83:1223‐1267.
   Poss, K.D. , Wilson, L.G. , and Keating, M.T. 2002 Heart regeneration in zebrafish. Science 298:2188‐2190.
   Qyang, Y. , Martin‐Puig, S. , Chiravuri, M. , Chen, S. , Xu, H. , Bu, L. , Jiang, X. , Lin, L. , Granger, A. , Moretti, A. , Caron, L. , Wu, X. , Clarke, J. , Taketo, M.M. , Laugwitz, K.L. , Moon, R.T. , Gruber, P. , Evans, S.M. , Ding, S. , and Chien, K.R. 2007. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta‐catenin pathway. Cell Stem Cell 1:165‐179.
   Senyo, S.E. , Steinhauser, M.L. , Pizzimenti, C.L. , Yang, V.K. , Cai, L. , Wang, M. , Wu, T.D. , Guerquin‐Kern, J.L. , Lechene, C.P. , and Lee, R.T. 2013. Mammalian heart renewal by pre‐existing cardiomyocytes. Nature 493:433‐436.
   Trosset, J.Y. , Dalvit, C. , Knapp, S. , Fasolini, M. , Veronesi, M. , Mantegani, S. , Gianellini, L.M. , Catana, C. , Sundstrom, M. , Stouten, P.F. , and Moll, J.K. 2006. Inhibition of protein‐protein interactions: The discovery of druglike beta‐catenin inhibitors by combining virtual and biophysical screening. Proteins 64:60‐67.
   Ying, Q.L. , Wray, J. , Nichols, J. , Batlle‐Morera, L. , Doble, B. , Woodgett, J. , Cohen, P. , and Smith, A. 2008. The ground state of embryonic stem cell self‐renewal. Nature 453:519‐523.
Internet Resources
  PCR primer sequences are available online at PrimerBank.
PDF or HTML at Wiley Online Library