Three‐Dimensional Patterning of the ECM Microenvironment Using Magnetic Nanoparticle Self Assembly

Jiyun Kim1, Kandice Tanner1

1 Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institutes (NIH), Bethesda, Maryland
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 25.3
DOI:  10.1002/0471143030.cb2503s70
Online Posting Date:  March, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This protocol describes a way to introduce topography to three‐dimensional (3D) biomaterials. The self‐assembling behavior of magnetic particles can be exploited to form nanoscale to microscale fibers, such that one can dissect the contribution of topography on cell behavior, which is independent of other physical properties of the biomaterial (e.g., stiffness). The magnetic particles are chemically cross‐linked with several extracellular matrix (ECM) proteins and then using magnetic force‐mediated assembly, one can program aligned nanofibers in a 3D hydrogel. This process allows the creation of diverse topographic patterns in 3D, including isotropic, anisotropic (fibril), or interfaced architectures, without changing the bulk stiffness of the scaffold material. This anisotropic architecture guides the dendritic protrusions of cells, which can be compared to cells grown in an isotropic architecture lacking spatial guidance cues. Several cell types, such as fibroblasts and neurons, have been cultured in this engineered 3D matrix. This technology provides an easy way to construct nano‐bio interfaces for various biomedical engineering applications as well as dissect the role of topography in various cell behaviors. © 2016 by John Wiley & Sons, Inc.

Keywords: three‐dimensional cell culture; extracellular matrix; topography; magnetic particles; magnetic field‐directed self‐assembly; biomaterial; nanocomposite material

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Creating an Anisotropic ECM Microenvironment by Nanoparticle Assembly
  • Support Protocol 1: Chemical Cross‐Linking of the ECM Proteins on the Surface of Magnetic Nanoparticles
  • Support Protocol 2: Staining and Imaging Cells in a 3D Anisotropic Matrix
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Creating an Anisotropic ECM Microenvironment by Nanoparticle Assembly

  Materials
  • Matrigel (Corning, cat. no. 354230) or hyaluronic acid (e.g., HyStemTM Hydrogel Kit; ESI BIO, cat. no. GS311)
  • Cell culture medium (see recipe)
  • Serum‐free culture medium (see recipe)
  • Cells (e.g., NIH 3T3 fibroblasts) growing in culture
  • ECM protein‐coated superparamagnetic particles ( protocol 2)
  • LabTek 8‐well chambered coverglass (Thermo Scientific, cat. no. 155411) or 12‐well cell culture plate (Corning, cat. no. 3512)
  • 37°C, 10% CO 2 cell culture incubator
  • NdFeB block magnet, 25.4 mm × 25.4 mm × 25.4 mm (K&J Magnetics, Inc., cat. no. B888)
  • Microscope with 10× objective
  • Additional reagents and equipment for mammalian cell tissue culture, trypinization, and counting cells using a hemacytometer (unit 1.1; Phelan and May, )

Support Protocol 1: Chemical Cross‐Linking of the ECM Proteins on the Surface of Magnetic Nanoparticles

  Materials
  • 300‐nm carboxyl‐superparamagnetic beads (AdemTech, cat. no. 02131)
  • 10× activation buffer (AdemTech, cat. no. 10101)
  • 1‐ethyl‐3‐(3‐dimethylaminopropyl carbodiimide hydrochloride) (EDC; AdemTech, cat. no. 10403)
  • 10× storage buffer (AdemTech, cat. no. 10201)
  • Bovine serum albumin (BSA; Sigma‐Aldrich, cat. no. A7906)
  • Fibronectin, labeled with HiLyte Fluor 488 (Cytoskeleton, Inc., cat. no. FNR02)
  • Laminin, labeled with rhodamine (Cytoskeleton, Inc., cat. no. LMN01)
  • 1.5‐ml microcentrifuge tubes
  • Shaker (mixer)

Support Protocol 2: Staining and Imaging Cells in a 3D Anisotropic Matrix

  Materials
  • Cells grown in an anisotropic 3D matrix (Basic Protocol 1)
  • 4% (w/v) paraformaldehyde (see recipe)
  • Phosphate‐buffered saline, pH 7.2 (PBS; KD Medical, cat. no. RGE‐3190)
  • Blocking buffer (see recipe)
  • Phalloidin, conjugated to Alexa Fluor 633 (Life Technologies, cat. no. A22284)
  • Hoechst 33342 (Life Technologies, cat. no. H3570)
  • Confocal microscope
  • Additional reagents and equipment for immunofluorescence staining (unit 4.1; Donaldson, ) and confocal microscopy (unit 4.5; Smith, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ahn, S., Deravi, L.F., Park, S.J., Dabiri, B.E., Kim, J.S., Parker, K.K., and Shin, K. 2015. Self‐organizing large‐scale extracellular‐matrix protein networks. Adv. Mater. 27:2838‐2345. doi: 10.1002/adma.201405556.
  Chaudhuri, O., Gu, L., Darnell, M., Klumpers, D., Bencherif, S.A., Weaver, J.C., Huebsch, N., and Mooney, D.J. 2015. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6:6364.
  Dalby, M.J., Gadegaard, N., and Oreffo, R.O.C. 2014. Harnessing nanotopography and integrin‐matrix interactions to influence stem cell fate. Nat. Mater. 13:558‐569. doi: 10.1038/nmat3980.
  DeForest, C.A. and Tirrell, D.A. 2015. A photoreversible protein‐patterning approach for guiding stem cell fate in three‐dimensional gels. Nat. Mater. 14:523‐531. doi: 10.1038/nmat4219.
  DeForest, C.A., Polizzotti, B.D., and Anseth, K.S. 2009. Sequential click reactions for synthesizing and patterning three‐dimensional cell microenvironments. Nat. Mater. 8:659‐664. doi: 10.1038/nmat2473.
  Donaldson, J.G. 2015. Immunofluorescence staining. Curr. Protoc. Cell Biol. 69:4.3.1‐4.3.7. doi: 10.1002/0471143030.cb0403s69.
  Dong, B., Smith, M.E., and Wnek, G.E. 2009. Encapsulation of multiple biological compounds within a single electrospun fiber. Small 5:1508‐1512. doi: 10.1002/smll.200801750.
  Doyle, A.D., Petrie, R.J., Kutys, M.L., and Yamada, K.M. 2013. Dimensions in cell migration. Curr. Opin. Cell Biol. 25:642‐649. doi: 10.1016/j.ceb.2013.06.004.
  Dvir, T., Timko, B.P., Kohane, D.S., and Langer, R. 2011. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6:13‐22. doi: 10.1038/nnano.2010.246.
  Griffith, L.G. and Swartz, M.A. 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211‐224. doi: 10.1038/nrm1858.
  Hartgerink, J.D., Beniash, E., and Stupp, S.I. 2001. Self‐assembly and mineralization of peptide‐amphiphile nanofibers. Science 294:1684‐1688. doi: 10.1126/science.1063187.
  Hoffman, B.D., Grashoff, C., and Schwartz, M.A. 2011. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316‐323. doi: 10.1038/nature10316.
  Hoffman‐Kim, D., Mitchel, J.A., and Bellamkonda, R.V. 2010. Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12:203‐231. doi: 10.1146/annurev‐bioeng‐070909‐105351.
  Ionescu, L.C., Lee, G.C., Sennett, B.J., Burdick, J.A., and Mauck, R.L. 2010. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31:4113‐4120. doi: 10.1016/j.biomaterials.2010.01.098.
  Kim, J., Staunton, J.R., and Tanner, K. 2015. Independent control of topography for 3D patterning of the ECM microenvironment. Adv Mater. doi: 10.1002/adma.201503950. [Epub ahead of print]
  Levental, K.R., Yu, H.M., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D.L., and Weaver, V.M. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891‐906. doi: 10.1016/j.cell.2009.10.027.
  Mouw, J.K., Ou, G.Q., and Weaver, V.M. 2014. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Bio. 15:771‐785. doi: 10.1038/nrm3902.
  Phelan, K. and May, K.M. 2015. Basic techniques in mammalian cell tissue culture. Curr. Protoc. Cell Biol. 66:1.1.1‐1.1.22. doi: 10.1002/0471143030.cb0101s66.
  Raub, C.B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J.D., Putnam, A.J., Tromberg, B.J., and George, S.C. 2007. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92:2212‐2222. doi: 10.1529/biophysj.106.097998.
  Raub, C.B., Unruh, J., Suresh, V., Krasieva, T., Lindmo, T., Gratton, E., Tromberg, B.J., and George, S.C. 2008. Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys. J. 94:2361‐2373. doi: 10.1529/biophysj.107.120006.
  Santos, E., Hernandez, R.M., Pedraz, J.L., and Orive, G. 2012. Novel advances in the design of three‐dimensional bio‐scaffolds to control cell fate: Translation from 2D to 3D. Trends Biotechnol. 30:331‐341. doi: 10.1016/j.tibtech.2012.03.005.
  Smith, C. L. 2001. Basic confocal microscopy. Curr. Protoc. Cell Biol. 1:4.5.1–4.5.12.
  Sur, S., Pashuck, E.T., Guler, M.O., Ito, M., Stupp, S.I., and Launey, T. 2012. A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials 33:545‐555. doi: 10.1016/j.biomaterials.2011.09.093.
  Tanner, K., Mori, H., Mroue, R., Bruni‐Cardoso, A., and Bissell, M.J. 2012. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl. Acad. Sci. U. S. A. 109:1973‐1978. doi: 10.1073/pnas.1119578109.
  Ventre, M., Natale, C.F., Rianna, C., and Netti, P.A. 2014. Topographic cell instructive patterns to control cell adhesion, polarization and migration. J. R. Soc. Interface 11:20140687. doi: 10.1098/rsif.2014.0687.
  Wang, H., Lacoche, S., Huang, L., Xue, B., and Muthuswamy, S.K. 2013. Rotational motion during three‐dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. P Natl. Acad. Sci. U.S.A. 110:163‐168. doi: 10.1073/pnas.1201141110.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library