COS‐1 Cells as Packaging Host for Production of Lentiviruses

Crystal J. MacKenzie1, Toshi Shioda1

1 Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts
Publication Name:  Current Protocols in Cell Biology
Unit Number:  Unit 26.7
DOI:  10.1002/0471143030.cb2607s50
Online Posting Date:  March, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


We present a protocol for in vitro production of recombinant lentiviruses using COS‐1 African green monkey kidney epithelial cells and HEK293T human embryonic kidney epithelial cells as packaging cells. COS‐1 and HEK293T express SV40 large T antigen, amplifying transfected circular plasmids harboring SV40 replication origin. Support protocols for evaluation of transfection efficiency by in situ β‐galactosidase enzyme activity assay and titer of infection‐capable virions are also provided. Advantages of using COS‐1 packaging cells over the standard HEK293T cells for contamination‐sensitive applications or automated processing are discussed. Curr. Protoc. Cell Biol. 50:26.7.1‐26.7.15. © 2011 by John Wiley & Sons, Inc.

Keywords: lentivirus; COS‐1; packaging; HEK293T

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Production of Lentivirus Virions by Transfection of COS‐1 Cells or HEK293T Cells
  • Support Protocol 1: Determination of Transfection Efficiency
  • Support Protocol 2: Determination of Lentivirus Titer by Drug Selection
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Production of Lentivirus Virions by Transfection of COS‐1 Cells or HEK293T Cells

  • COS‐1 cells (ATCC CRL‐1650) or HEK293T cells (Broad Institute); commercially available HEK293T derivatives include HEK293T/17 cells (ATCC CRL‐11268) and HEK293FT cells (Invitrogen)
  • Alcohol pads
  • Low‐FBS DMEM (see recipe)
  • 1× trypsin/EDTA (Mediatech, cat. no. 25‐053‐Cl)
  • Dulbecco's phosphate‐buffered saline (DPBS, without Ca2+/Mg2+; Mediatech, cat. no. 21040CM)
  • Opti‐MEM I reduced serum medium (Invitrogen, cat. no. 31985‐070)
  • Lentivirus vector plasmid (e.g., pCMV‐dR8.91, Broad Institute), 0.5 µg/ml in 1× TE buffer (see appendix 2A for TE buffer)
  • TransIT‐LT1 transfection agent (Mirus, cat. no. MIR‐2306;
  • VSV‐G expression plasmid (e.g., pMD2G, Broad Institute), 0.5 µg/ml in 1× TE buffer (see appendix 2A for TE buffer)
  • Lentiviral LTR‐containing expression cassette vector (e.g., pLKO.1, Broad Institute), 20 ng/ml in 1× TE buffer (see appendix 2A for TE buffer)
  • High‐FBS DMEM (see recipe)
  • Vesphene IISE (Fisher, cat. no. 14‐415‐11)
  • 10‐cm cell culture dishes (Corning, cat. no. 430293)
  • 37°C Incubator with 5% to 10% CO 2
  • Disposable 10‐ml syringes (Becton Dickinson, cat. no. 309604)
  • 96‐well flat‐bottom cell culture plate (Corning 3599)
  • 50‐ml centrifuge tube (Corning, cat. no. 430290)
  • 96‐well round‐bottom plate (Corning, cat. no. 3790)
  • Multichannel pipettor and 50‐ml reagent reservoir (Corning, cat. no. 4870)
  • 96‐well round‐bottom deep‐well plate, 2 ml/well (Fisher, cat. no. 12‐566‐121)
  • Microamp seal (ABI, cat. no. 4306311)
  • TempPlate Sealing Foil (sterilized aluminum sealing foil; USA Scientific, cat. no. 2923‐0110)
NOTE: All solutions and equipment coming into contact with cells must be sterile, and proper aseptic technique should be used accordingly.NOTE: All cell culture incubations should be performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.

Support Protocol 1: Determination of Transfection Efficiency

  • pSV‐β‐galactosidase (Promega, cat. no. E1081) or pCMVβ (Clontech, cat. no. 631719)
  • Glutaraldehyde fixative (see recipe)
  • Xgal substrate solution (see recipe)
  • 70% (w/w) glycerol

Support Protocol 2: Determination of Lentivirus Titer by Drug Selection

  • MCF‐7 human breast cancer cells (ATCC, HTB‐22)
  • 8 mg/ml polybrene (hexadimethrine bromide; Sigma, cat. no. H9268); filter sterilize with 0.22‐µm syringe filter and store in small aliquots up to 3 months at –20°C (avoid repeated freeze‐thaw cycles)
  • 2 mg/ml stock solution of puromycin dihydrochloride (cell‐culture grade; Sigma, cat. no. P8833); filter sterilize with 0.22‐µm syringe filter and store in small aliquots up to 3 months at –20°C (avoid repeated freeze‐thaw cycles)
  • Formaldehyde fixative (see recipe)
  • 70% ethanol
  • Crystal violet staining solution (see recipe)
  • Swinging‐bucket centrifuge with microtiter plate carrier approved for work with hazardous materials
  • Aerosol‐barrier pipet tips
  • 37°C, 5 to 10% CO 2 incubator designated for experiments with live lentivirus
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Azzouz, M. 2006. Gene therapy for ALS: Progress and prospects. Biochim. Biophys. Acta 1762:1122‐1127.
   Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B., and Debyser, Z. 2003. Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther. 10:1933‐1940.
   Blesch, A. 2004. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods 33:164‐172.
   Boutros, M. and Ahringer, J. 2008. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9:554‐566.
   Burns, J.C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J.K. 1993. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. U.S.A. 90:8033‐8037.
   Chang, L.J. and Zaiss, A.K. 2002. Lentiviral vectors: Preparation and use. Methods Mol. Med. 69:303‐318.
   Chapman, S.C., Lawson, A., Macarthur, W.C., Wiese, R.J., Loechel, R.H., Burgos‐Trinidad, M., Wakefield, J.K., Ramabhadran, R., Mauch, T.J., and Schoenwolf, G.C. 2005. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935‐940.
   Charrier, S., Stockholm, D., Seye, K., Opolon, P., Taveau, M., Gross, D.A., Bucher‐Laurent, S., Delenda, C., Vainchenker, W., Danos, O., and Galy, A. 2005. A lentiviral vector encoding the human Wiskott‐Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Ther. 12:597‐606.
   Cockrell, A.S. and Kafri, T. 2007. Gene delivery by lentivirus vectors. Mol. Biotechnol. 36:184‐204.
   Coleman, J.E., Huentelman, M.J., Kasparov, S., Metcalfe, B.L., Paton, J.F., Katovich, M.J., Semple‐Rowland, S.L., and Raizada, M.K. 2003. Efficient large‐scale production and concentration of HIV‐1‐based lentiviral vectors for use in vivo. Physiol. Genomics 12:221‐228.
   Dann, C.T. 2007. New technology for an old favorite: Lentiviral transgenesis and RNAi in rats. Transgenic Res. 16:571‐580.
   Devitt, G., Thomas, M., Klibanov, A.M., Pfeiffer, T., and Bosch, V. 2007. Optimized protocol for the large scale production of HIV pseudovirions by transient transfection of HEK293T cells with linear fully deacylated polyethylenimine. J. Virol. Methods 146:298‐304.
   Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., and Hacohen, N. 2006. Minimizing the risk of reporting false positives in large‐scale RNAi screens. Nat. Methods 3:777‐779.
   Follenzi, A., Santambrogio, L., and Annoni, A. 2007. Immune responses to lentiviral vectors. Curr. Gene Ther. 7:306‐315.
   Galy, A., Roncarolo, M.G., and Thrasher, A.J. 2008. Development of lentiviral gene therapy for Wiskott Aldrich syndrome. Expert Opin. Biol. Ther. 8:181‐190.
   Geraerts, M., Michiels, M., Baekelandt, V., Debyser, Z., and Gijsbers, R. 2005. Upscaling of lentiviral vector production by tangential flow filtration. J. Gene Med. 7:1299‐1310.
   Kahl, C.A., Marsh, J., Fyffe, J., Sanders, D.A., and Cornetta, K. 2004. Human immunodeficiency virus type 1‐derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J. Virol. 78:1421‐1430.
   Koldej, R., Cmielewski, P., Stocker, A., Parsons, D.W., and Anson, D.S. 2005. Optimization of a multipartite human immunodeficiency virus based vector system: Control of virus infectivity and large‐scale production. J. Gene Med. 7:1390‐1399.
   Kolegraff, K., Bostik, P., and Ansari, A.A. 2006. Characterization and role of lentivirus‐associated host proteins. Exp. Biol. Med. 231:252‐263.
   Lillico, S.G., Sherman, A., McGrew, M.J., Robertson, C.D., Smith, J., Haslam, C., Barnard, P., Radcliffe, P.A., Mitrophanous, K.A., Elliot, E.A., and Sang, H.M. 2007. Oviduct‐specific expression of two therapeutic proteins in transgenic hens. Proc. Natl. Acad. Sci. U.S.A. 104:1771‐1776.
   Luno, A.R. 2006. Ethical reflections on vaccines using cells from aborted fetuses. Natl. Cathol. Bioeth. Q. 6:453‐459.
   Lyon, A.R., Sato, M., Hajjar, R.J., Samulski, R.J., and Harding, S.E. 2008. Gene therapy: Targeting the myocardium. Heart 94:89‐99.
   Mandel, R.J., Burger, C., and Snyder, R.O. 2008. Viral vectors for in vivo gene transfer in Parkinson's disease: Properties and clinical grade production. Exp. Neurol. 209:58‐71.
   McGrew, M.J., Sherman, A., Ellard, F.M., Lillico, S.G., Gilhooley, H.J., Kingsman, A.J., Mitrophanous, K.A., and Sang, H. 2004. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 5:728‐733.
   Mitta, B., Rimann, M., and Fussenegger, M. 2005. Detailed design and comparative analysis of protocols for optimized production of high‐performance HIV‐1‐derived lentiviral particles. Metab. Eng. 7:426‐436.
   Moffat, J. and Sabatini, D.M. 2006. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7:177‐187.
   Moffat, J., Grueneberg, D.A., Yang, X., Kim, S.Y., Kloepfer, A.M., Hinkle, G., Piqani, B., Eisenhaure, T.M., Luo, B., and Grenier, J.K. 2006. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high‐content screen. Cell 124:1283‐1298.
   Mortellaro, A., Hernandez, R.J., Guerrini, M.M., Carlucci, F., Tabucchi, A., Ponzoni, M., Sanvito, F., Doglioni, C., Di Serio, C., and Biasco, L. 2006. Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)‐deficient mice and corrects their immune and metabolic defects. Blood 108:2979‐2988.
   Naldini, L., Blomer, U., Gage, F.H., Trono, D., and Verma, I.M. 1996a. Efficient transfer, integration, and sustained long‐term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 93:11382‐11388.
   Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. 1996b. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263‐267.
   Neschadim, A., McCart, J.A., Keating, A., and Medin, J.A. 2007. A roadmap to safe, efficient, and stable lentivirus‐mediated gene therapy with hematopoietic cell transplantation. Biol. Blood Marrow Transplant 13:1407‐1416.
   Nixon, A.J., Goodrich, L.R., Scimeca, M.S., Witte, T.H., Schnabel, L.V., Watts, A.E., and Robbins, P.D. 2007. Gene therapy in musculoskeletal repair. Ann. N.Y. Acad. Sci. 1117:310‐327.
   Paddison, P.J., Silva, J.M., Conklin, D.S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O'Shaughnessy, A., Gnoj, L., and Scobie, K. 2004. A resource for large‐scale RNA‐interference‐based screens in mammals. Nature 428:427‐431.
   Park, F. 2007. Lentiviral vectors: Are they the future of animal transgenesis? Physiol. Genomics 31:159‐173.
   Pontifical Academy for Life. 2006. Moral reflections on vaccines prepared from cells derived from aborted human fetuses. Natl. Cathol. Bioeth. Q. 6:541‐537.
   Pruss, A.R. 2004. Cooperation with past evil and use of cell‐lines derived from aborted fetuses. Linacre Q. 71:335‐350.
   Root, D.E., Hacohen, N., Hahn, W.C., Lander, E.S., and Sabatini, D.M. 2006. Genome‐scale loss‐of‐function screening with a lentiviral RNAi library. Nat. Methods 3:715‐719.
   Scherr, M., Battmer, K., Eder, M., Schule, S., Hohenberg, H., Ganser, A., Grez, M., and Blomer, U. 2002. Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther. 9:1708‐1714.
   Scott, B.B. and Lois, C. 2006. Generation of transgenic birds with replication‐deficient lentiviruses. Nat. Protoc. 1:1406‐1411.
   Segura, M.M., Kamen, A., and Garnier, A. 2006. Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol. Adv. 24:321‐337.
   Segura, M.M., Garnier, A., Durocher, Y., Coelho, H., and Kamen, A. 2007. Production of lentiviral vectors by large‐scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol. Bioeng. 98:789‐799.
   Sena‐Esteves, M., Tebbets, J.C., Steffens, S., Crombleholme, T., and Flake, A.W. 2004. Optimized large‐scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122:131‐139.
   Silva, J.M., Li, M.Z., Chang, K., Ge, W., Golding, M.C., Rickles, R.J., Siolas, D., Hu, G., Paddison, P.J., and Schlabach, M.R. 2005. Second‐generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37:1281‐1288.
   Smith, S.L. and Shioda, T. 2009. Advantages of COS‐1 monkey kidney epithelial cells as packaging host for small‐volume production of high‐quality recombinant lentiviruses. J. Virol. Methods 157:47‐54.
   Tonini, T., Claudio, P.P., Giordano, A., and Romano, G. 2004. Transient production of retroviral‐ and lentiviral‐based vectors for the transduction of mammalian cells. Methods Mol. Biol. 285:141‐148.
   Wong, A. 2006. The ethics of HEK 293. Natl. Cathol. Bioeth. Q. 6:473‐495.
   Yamada, K., McCarty, D.M., Madden, V.J., and Walsh, C.E. 2003. Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 34:1074‐1080.
   Yamamoto, T. and Tsunetsugu‐Yokota, Y. 2008. Prospects for the therapeutic application of lentivirus‐based gene therapy to HIV‐1 infection. Curr. Gene Ther. 8:1‐8.
   Zaia, J.A. 2007. The status of gene vectors for the treatment of diabetes. Cell Biochem. Biophys. 48:183‐190.
   Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L., and Trono, D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15:871‐875.
   Zufferey, R., Dull, T., Mandel, R.J., Bukovsky, A., Quiroz, D., Naldini, L., and Trono, D. 1998. Self‐inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72:9873‐9880.
PDF or HTML at Wiley Online Library