Overview of Liquid Handling Instrumentation for High‐Throughput Screening Applications

Stewart Rudnicki1, Sean Johnston1

1 ICCB‐Longwood Screening Facility, Harvard Medical School, Boston, Massachusetts
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch090151
Online Posting Date:  December, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Liquid handling in the laboratory has unique challenges specific to the types of research being performed. The devices employed for purposes of performing liquid handling can be broken down into three general categories: bulk reagent dispensers, transfer devices, and plate washers. An overview of these types of liquid handlers, as well as common features and relevance to high‐throughput applications, are discussed in this article. Important topics such as sterility, ease of use, cost, and instrument design advantages and disadvantages are also covered. Curr. Protoc. Chem Biol. 1:43‐54. © 2009 by John Wiley & Sons, Inc.

Keywords: liquid handling; high throughput screening (HTS); laboratory automation; plate filler; plate washer

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Types of Liquid Handlers
  • Summary
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Albert, K.J., Bradshaw, J.T., Knaide, T.R., and Rogers, A.L. 2006. Verifying liquid‐handler performance for complex or nonaqueous reagents: A new approach. J. Assoc. Lab. Automat. 11:172‐180.
   Bradshaw, J.T., Knaide, T.R., Rogers, A., and Curtis, R. 2005. Multichannel verification system (MVS): A dual‐dye ratiometric photometry system for performance verification of multichannel liquid delivery devices. J. Assoc. Lab. Automat. 10:35‐42.
   Bradshaw, J.T., Curtis, R.H., Knaide, T.R., and Spaulding, B.W. 2007. Determining dilution accuracy in microtiter plate assays using a quantitative dual‐wavelength absorbance method. J. Assoc. Lab. Automat. 2007 12:260‐266.
   Burnbaum J.J. 1998. Miniaturization technologies in HTS: How fast, how small, how soon? Drug Disc. Today 3:304‐312.
   de Gennes, P.G. 1985. Wetting: Statics and dynamics. Rev. Mod. Phys. 57:827‐863.
   Dunn, D.A. and Feygin, I. 2000. Challenges and solutions to ultra‐high‐throughput screening assay miniaturization: Submicroliter fluid handling. Drug Disc. Today 5:84‐91.
   Gu, H. and Deng, Y. 2007. Dilution effect in multichannel liquid‐handling system equipped with fixed tips: Problems and solutions for bioanalytical sample preparation. J. Assoc. Lab. Automat. 12:355‐362.
   Gurevitch, D. 2008. Case study: Birth of an ALA short course. J. Assoc. Lab. Automat. 13:136‐144.
   Hamilton, S.D. 2008. ALA survey on laboratory automation. J. Assoc. Lab. Automat. 14:308‐319.
   Harris, D., Mutz, M., Sonntag, M., Stearns, R., Shieh, J., Pickett, S., Ellson, R., and Olechno, J. 2008. Low nanoliter acoustic transfer of aqueous fluids with high precision and accuracy of volume transfer and positional placement. J. Assoc. Lab. Automat. 13:97‐102.
   Held, P. and Buehrer, L. 2004. The ELx405 384‐well microplate washer: Designed to meet the rigors of biomolecular screening. http://www.biotek.com/resources/docs/Lab_Automation_2004_Poster.pdf.
   Hsieh, H.B., Fitch, J., White, D., Torres, F., Roy, J., Matusiak, R., Krivacic, B., Kowalski, B., Bruce, R., and Elrod, S. 2004. Ultra‐high‐throughput microarray generation and liquid dispensing using multiple disposable piezoelectric ejectors. J. Biomolec. Screen. 9:85‐94.
   Hughes, S.R., Riedmuller, S.B., Mertens, J.A., Li, X.‐L., Bischoff, K.M., Cotta, M.A., Farrelly, P.J. 2005. Development of a liquid handler component for a plasmid‐based functional proteomic robotic workcell. J. Assoc. Lab. Automat. 10:287‐300.
   Lequin, R.M. 2005. Enzyme immunoassay (EIA)/enzyme‐linked immunosorbent assay (ELISA). Clin. Chem. 51:2415‐2418.
   Lorenz, M.G.O. 2004. Liquid‐handling robotic workstations for functional genomics. J. Assoc. Lab. Automat. 9:262‐267.
   Olechno, J., Shieh, J., and Ellson, R. 2006. Improving IC50 results with acoustic droplet ejection. J. Assoc. Lab. Automat. 11:240‐246.
   Ouyang, Z., Federer, S., Porter, G., Kaufmann, C., and Jemal, M. 2008. Strategies to maintain sample integrity using a liquid‐filled automated liquid‐handling system with fixed pipetting tips. J. Assoc. Lab. Automat. 13:24‐32.
   Parry, J.V., Mortimer, P.P., Friderich, P., and Connell, J.A. 1997. Faulty washers and soiled micropipettors may generate false positive serological results. Clin. Diagn. Virol. 7:173‐181.
   Petersen, J. and Nguyen, J. 2005. Comparison of absorbance and fluorescence methods for determining liquid dispensing precision. J. Assoc. Lab. Automat. 10:82‐87.
   Quintero, C., Rosenstein, C., Hughes, B., Middleton, R., and Kariv, I. 2007. Quality control procedures for dose‐response curve generation using nanoliter dispense technologies. J. Biomolec. Screen. 12:891‐899.
   Taylor, P.B., Ashman, S., Baddeley, S.M., Bartram, S.L., Battle, C.D., Bond, B.C., Clements, Y.M., Gaul, N.J., McAllister, W.E., Mostacero, J.A., Ramon, F., Wilson, J.M., Hertzberg, R.P., Pope, A.J., and Macarron, R. 2002. A standard operating procedure for assessing liquid handler performance in high‐throughput screening. J. Biomolec. Screen. 7:554‐569.
   Wu, J.T.Y., Wong, L.S.Y., and Bowlby, E.E. 2006. An automated high‐throughput screening enzyme linked immunosorbent assay for Johne's disease antibodies in bovine serum. J. Assoc. Lab. Automat. 11:323‐330.
PDF or HTML at Wiley Online Library