Development of Chemical Probes for Biochemical Detection and Cellular Imaging of Myristoylated and Palmitoylated Proteins

Rami N. Hannoush1

1 Genentech, South San Francisco, California
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch100143
Online Posting Date:  February, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Fatty acylation of proteins regulates their spatial localization and activity in living cells. Methods to monitor fatty acylation are invaluable for studying its role in regulating protein dynamics. The protocols in this unit describe a procedure that involves metabolic labeling with ω‐alkynyl fatty acids for detecting and cellular imaging of fatty‐acylated proteins, namely myristoylated and palmitoylated proteins. Curr. Protoc. Chem. Biol. 3:15‐26 © 2011 by John Wiley & Sons, Inc.

Keywords: myristoylation; palmitoylation; alkynyl fatty acids; chemical probes; metabolic labeling; click chemistry; fatty acylation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Biochemical Detection of Myristoylated and Palmitoylated Cellular Proteins by Immunoblotting or In‐Gel Fluorescence
  • Basic Protocol 2: Cellular Imaging of Myristoylated and Plamitoylated Proteins
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Biochemical Detection of Myristoylated and Palmitoylated Cellular Proteins by Immunoblotting or In‐Gel Fluorescence

  • Cell line of interest:
    • Examples include:
    • Raw 264.7 macrophages (ATCC #CCL‐2278)
    • MDCK epithelial cells (ATCC #CCL‐34)
    • PC‐3 cells (ATCC #CRL‐1435)
    • Mouse L‐cells (ATCC #CRL‐2648)
    • HeLa cells (ATCC #CCL‐2)
    • Jurkat T cells (ATCC #TIB‐152)
    • COS‐7 cells (ATCC #CRL‐1651)
  • Appropriate cell culture growth medium (e.g., DMEM, F‐12K, RPMI)
  • Fatty acid stock solution (see recipe)
  • Bovine serum albumin (BSA; fatty acid‐free, Sigma‐Aldrich)
  • Dimethyl sulfoxide (DMSO)
  • Ethanol
  • Phosphate‐buffered saline (PBS; see recipe)
  • Lysis buffer (see recipe)
  • BCA protein assay kit (Thermo Scientific)
  • Biotin‐azide or rhodamine‐azide (see recipe)
  • Tris (2‐carboxyethyl)phosphine hydrochloride (TCEP; Sigma‐Aldrich)
  • Tris[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine (TBTA; Sigma‐Aldrich)
  • Copper sulfate (CuSO 4; Sigma‐Aldrich)
  • Acetone, ice‐cold
  • Novex Tris glycine SDS sample buffer (2×) (Invitrogen)
  • NuPAGE sample reducing agent (10×) (Invitrogen)
  • Tris‐glycine gels, precast (Invitrogen)
  • PBS‐T (see recipe)
  • Nonfat dried milk (any grocery store)
  • Streptavidin‐horseradish peroxidase (Invitrogen)
  • Hydroxylamine solution, 50% in water (NH 2OH; Sigma‐Aldrich)
  • Restore western blot stripping buffer (Thermo Scientific)
  • Anti‐β‐tubulin HRP antibody (Invitrogen)
  • 37°C, 5% CO 2 humidified incubator
  • 6‐well plates
  • Sonicator (Branson)
  • Cell scraper (25 cm, Starstedt)
  • Centrifuge (Eppendorf)
  • Nanocep centrifugal ultrafiltration devices (Pall Corporation)
  • Vortexer (VWR)
  • Thermomixer heating block (Eppendorf)
  • ECL immunoblotting detection kit (GE Healthcare)
  • Amersham Hyperfilm ECL (GE Healthcare)
  • Desktop scanner
  • ImageJ or AdobePhotoshop
  • Typhoon scanner
  • Additional reagents and equipment for transferring the proteins onto a nitrocellulose membrane (Gallagher et al., )

Basic Protocol 2: Cellular Imaging of Myristoylated and Plamitoylated Proteins

  • Phosphate‐buffered saline (PBS; see recipe)
  • Methanol (Sigma‐Aldrich), prechilled
  • PBS/0.1% (v/v) Triton X‐100
  • Rhodamine‐azide (see recipe)
  • Tris (2‐carboxyethyl)phosphine hydrochloride (TCEP; see recipe)
  • Copper sulfate (CuSO 4; see recipe)
  • Hoechst 33342 (Invitrogen, cat. no. H21492)
  • 12‐well tissue culture plates
  • Glass coverslips, washed in ethanol and left to dry for 10 min under UV light in a tissue culture hood before use
  • 37°C, 5% CO 2 incubator
  • Microscope slides
  • Fluorescence microscope and a 40× or 63× objective
  • Standard image analysis software: e.g., Slidebook 5.0 (Intelligent Imaging Innovation) or ImageJ (NIH)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Drisdel, R.C. and Green, W.N. 2004. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36:276‐285.
   Gallagher, S., Winston, S.E., Fuller, S.A., and Hurrell, J.G. 2008. Immunoblotting and Immunodetection. Curr. Protoc. Mol. Biol. 83:10.8.1‐10.8.28.
   Hannoush, R.N. and Arenas‐Ramirez, N. 2009. Imaging the lipidome: Omega‐alkynyl fatty acids for detection and cellular visualization of lipid‐modified proteins. ACS Chem. Biol. 4:581‐587.
   Hannoush, R.N. and Sun, J. 2010. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 6:498‐506.
   Heal, W.P., Wickramasinghe, S.R., Bowyer, P.W., Holder, A.A., Smith, D.F., Leatherbarrow, R.J., and Tate, E.W. 2008. Site‐specific N‐terminal labelling of proteins in vitro and in vivo using N‐myristoyl transferase and bioorthogonal ligation chemistry. Chem. Commun. (Camb) 4:480‐482.
   Hsu, T.L., Hanson, S.R., Kishikawa, K., Wang, S.K., Sawa, M., and Wong, C.H. 2007. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl. Acad. Sci. U.S.A. 104:2614‐2619.
   Lewis, W.G., Magallon, F.G., Fokin, V.V., and Finn, M.G. 2004. Discovery and characterization of catalysts for azide−alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc. 126:9152‐9153.
   Linder, M.E. and Deschenes, R.J. 2007. Palmitoylation: Policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8:74‐84.
   Martin, B.R. and Cravatt, B.F. 2009. Large‐scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6:135‐138.
   Peseckis, S.M., Deichaite, I., and Resh, M.D. 1993. Iodinated fatty acids as probes for myristate processing and function. Incorporation into pp60v‐src. J. Biol. Chem. 268:5107‐5114.
   Resh, M.D. 2006. Trafficking and signaling by fatty‐acylated and prenylated proteins. Nat. Chem. Biol. 2:584‐590.
   Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. 2002. A stepwise Huisgen cycloaddition process: Copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41:2596‐2599.
   Roth, A.F., Wan, J., Green, W.N., Yates, J.R., and Davis, N.G. 2006. Proteomic identification of palmitoylated proteins. Methods 40:135‐142.
   Schlesinger, M.J., Magee, A.I., and Schmidt, M.F.G. 1980. Fatty acid acylation of proteins in cultured cells. J. Biol. Chem. 255:10021‐10024.
   Speers, A.E. and Cravatt, B.F. 2004. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11:535‐546.
   Tornoe, C.W., Christensen, C., and Meldal, M. 2002. Peptidotriazoles on solid phase: [1,2,3]‐Triazoles by regiospecific copper(i)‐catalyzed 1,3‐dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67:3057‐3064.
   Wang, Q., Chan, T.R., Hilgraf, R., Fokin, V.V., Sharpless, K.B., and Finn, M.G. 2003. Bioconjugation by copper(I)‐catalyzed azide‐alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125:3192‐3193.
   Yap, M.C., Kostiuk, M.A., Martin, D.D.O., Perinpanayagam, M.A., Hak, P.C., Siddam, A., Majjigapu, J.R., Rajaiah, G., Keller, B.O., Prescher, J.A., Wu, P., Bertozzi, C.R., Falck, J.R., and Berthiaume, L.G. 2010. Rapid and selective detection of fatty acylated proteins using omega‐alkynyl‐fatty acids and click chemistry. J. Lipid Res. 51:1566‐1580.
PDF or HTML at Wiley Online Library