Advances in Lectin Microarray Technology: Optimized Protocols for Piezoelectric Print Conditions

Kanoelani T. Pilobello1, Praveen Agrawal1, Richard Rouse2, Lara K. Mahal1

1 Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, 2 HTS Resources, San Diego, California
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch120035
Online Posting Date:  March, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Lectin microarray technology has been used to profile the glycosylation of a multitude of biological and clinical samples, leading to new clinical biomarkers and advances in glycobiology. Lectin microarrays, which include >90 plant lectins, recombinant lectins, and selected antibodies, are used to profile N‐linked, O‐linked, and glycolipid glycans. The specificity and depth of glycan profiling depends upon the carbohydrate‐binding proteins arrayed. The current set targets mammalian carbohydrates including fucose, high mannose, branched and complex N‐linked, α‐ and β‐galactose and GalNAc, α‐2,3‐ and α‐2,6‐sialic acid, LacNAc, and Lewis X epitopes. Previous protocols have described the use of a contact microarray printer for lectin microarray production. Here, an updated protocol that uses a non‐contact, piezoelectric printer, which leads to increased lectin activity on the array, is presented. Optimization of print and sample hybridization conditions and methods of analysis are discussed. Curr. Protoc. Chem. Biol. 5:1‐23 © 2013 by John Wiley & Sons, Inc.

Keywords: carbohydrate analysis; glycomics; lectin microarray; Nano‐Plotter; piezoelectric

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Lectin Microarray Print Preparation and General Printing Protocol Using Non‐Contact Printer (Nano‐Plotter)
  • Basic Protocol 2: Sample Preparation, Labeling, Hybridization, and Data Analysis
  • Alternate Protocol 1: Using an Advanced Program Interface (Multitask) for Customizable Automation
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Lectin Microarray Print Preparation and General Printing Protocol Using Non‐Contact Printer (Nano‐Plotter)

  • Nexterion H slides (Schott): store ∼1 year at −20°C in a vacuum‐tight packet
  • Lectins (see Table 12.0.3500)
  • Monosaccharides: 99.5+% α‐D‐lactose monohydrate, 99+% D‐(+)‐mannose, 99+% D‐(+)‐galactose, 97% l‐(–)‐fucose, N acetyl‐glucosamine (Acros Organics)
  • PBS‐Tween (PBS‐T): 0.1 M NaH 2PO 4, 0.15 M NaCl, 0.01% Tween‐20, pH 7.2
  • 384‐well plates
  • Centrifuge with microplate adaptors
  • Nano‐Plotter 2.1 piezoelectric printer (GeSiM) with cooled microwell plate holder and cooled printing deck (Figure )

Basic Protocol 2: Sample Preparation, Labeling, Hybridization, and Data Analysis

  • Glycoproteins (Sigma) or cells (harvested from tissue culture)
  • NHS‐Cy3 or ‐Cy5 dye (GE Healthcare Life Sciences; store at 4°C in the dark)
  • Cy dye labeling buffer: 0.1 M Na 2CO 3 in H 2O, pH 9.3, prepare fresh
  • 250 mM Tris buffer, pH 6.8
  • Phosphate‐buffered saline (PBS): 0.1 M NaH 2PO 4, 0.15 M NaCl, pH 7.3
  • Lectin array (see protocol 1; printed slides should be stored under vacuum up to 1 month at −20°C)
  • Blocking solution: 25 mM ethanolamine in 100 mM sodium borate, pH 8.0
  • PBS‐Tween (PBS‐T) wash buffer: 0.1 M NaH 2PO 4, 0.15 M NaCl, 0.01% Tween 20, pH 7.2
  • Labotron shaker AK15/6 (Bottmingen)
  • VialTweeter sonicator (Heischler)
  • Ultracentrifuge (Optima L‐100K ultracentrifuge, Beckman Coulter)
  • 25‐G needles and 1‐ml syringes
  • Coplin jars
  • Slide spinner (model C1303; Labnet International)
  • 24‐well multi‐well hybridization cassette (FAST frame; Arrayit)
  • GenePix 4300A fluorescent slide scanner (Molecular Devices)
  • Genepix Pro 7 software (Molecular Devices)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Andresen, H., Grötzinger, C., Zarse, K., Kreuzer, O.J., Ehrentreich‐Förster, E., and Bier, F.F. 2006. Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics 6:1376‐1384.
   Batista, B.S., Eng, W.S., Pilobello, K.T., Hendricks‐Muñoz, K.D., and Mahal, L.K. 2011. Identification of a conserved glycan signature for microvesicles. J. Proteome Res. 10:4624‐4633.
   Bird‐Lieberman, E.L., Neves, A.A., Lao‐Sirieix, P., O'Donovan, M., Novelli, M., Lovat, L.B., Eng, W.S., Mahal, L.K., Brindle, K.M., and Fitzgerald, R.C. 2012. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Medicine 18:315‐321.
   Fry, S.A., Afrough, B., Lomax‐Browne, H.J., Timms, J.F., Velentzis, L.S., and Leathem, A.J. 2011. Lectin microarray profiling of metastatic breast cancers. Glycobiology 21:1060‐1070.
   Geierstanger, B.H., Saviranta, P., and Brinker, A. 2006. Antibody microarrays using resonance light‐scattering particles for detection. Methods Mol. Biol. 328:31‐50.
   Hardiman, G., Ramana Bhasker, C., and Rouse, R. 2009. Microarray Innovations Technology and Experimentation. CRC Press, Boca Raton, Fla.
   Hirabayashi, J. 2008. Concept, strategy and realization of lectin‐based glycan profiling. J. Biochem. 144:139‐147.
   Hsu, K.L. and Mahal, L.K. 2006. A lectin microarray approach for the rapid analysis of bacterial glycans. Nat. Protoc. 1:543‐549.
   Hsu, K.L., Pilobello, K.T., and Mahal, L.K. 2006. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2:153‐157.
   Hsu, K.L., Gildersleeve, J.C., and Mahal, L.K. 2008. A simple strategy for the creation of a recombinant lectin microarray. Mol. Biosyst. 4:654‐662.
   Hsu, K.L., Pilobello, K., Krishnamoorthy, L., and Mahal, L.K. 2011. Ratiometric lectin microarray analysis of the mammalian cell surface glycome. Methods Mol. Biol. 671:117‐131.
   Kambhampati, D. 2004. Production of protein microarrays. In Protein Microarray Technology pp. 165‐193. Wiley‐VCH, Weinheim, Germany.
   Krishnamoorthy, L., Bess, J.W. Jr., Preston, A.B., Nagashima, K., and Mahal, L.K. 2009. HIV‐1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat. Chem. Biol. 5:244‐250.
   Kuno, A., Uchiyama, N., Koseki‐Kuno, S., Ebe, Y., Takashima, S., Yamada, M., and Hirabayashi, J. 2005. Evanescent‐field fluorescence‐assisted lectin microarray: A new strategy for glycan profiling. Nat. Methods 2:851‐856.
   Li, Y., Tao, S.C., Bova, G.S., Liu, A.Y., Chan, D.W., Zhu, H., and Zhang, H. 2011. Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin‐based immunosorbent assays. Anal. Chem. 83:8509‐8516.
   Pilobello, K.T. and Mahal, L.K. 2007. Deciphering the glycocode: The complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11:300‐305.
   Pilobello, K.T, Krishnamoorthy, L., Slawek, D., and Mahal, L.K. 2005. Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 2005 6:985‐989.
   Shirai, T., Watanabe, Y., Lee, M.S., Ogawa, T., and Muramoto, K. 2009. Structure of rhamnose‐binding lectin CSL3: Unique pseudo‐tetrameric architecture of a pattern recognition protein. J. Mol. Biol. 391:390‐403.
   Takekawa, H., Ina, C., Sato, R., Toma, K., and Ogawa, H. 2006. Novel carbohydrate‐binding activity of pancreatic trypsins to N‐linked glycans of glycoproteins. J. Biol. Chem. 281:8528‐8538.
   Townsend, R.R., Hardy, M.R., Cumming, D.A., Carver, J.P., and Bendiak, B. 1989. Separation of branched sialylated oligosaccharides using HPAE‐PAD. Anal. Biochem. 182:1‐8.
   Toyoda, M., Yamazaki‐Inoue, M., Itakura, Y., Kuno, A., Ogawa, T., Yamada, M., Akutsu, H., Takahashi, Y., Kanzaki, S., Narimatsu, H., Hirabayashi, J., and Umezawa, A. 2011. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 16:1‐11.
   Walther, M., Stillman, B., Frisse, A., and Beator, J. 2007. The FAST Guide to Protein Microarrays. Whatman/Schleicher & Schuell, Dassel, Germany.
   Yasuda, E., Tateno, H., Hirabayashi, J., Iino, T., and Sako, T. 2011. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides. Appl. Environ. Microbiol. 77:4539‐4546.
PDF or HTML at Wiley Online Library

Supplementary Material