Saturation Transfer Difference NMR for Fragment Screening

Darren W. Begley1, Spencer O. Moen1, Phillip G. Pierce1, Edward R. Zartler2

1 Emerald Bio, Bainbridge Island, Washington, 2 Quantum Tessera Consulting, Collegeville, Pennsylvania
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch130118
Online Posting Date:  December, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Fragment screening by saturation transfer difference nuclear magnetic resonance (STD‐NMR) is a robust method for identifying small molecule binders and is well suited to a broad set of biological targets. STD‐NMR is exquisitely sensitive for detecting weakly binding compounds (a common characteristic of fragments), which is a crucial step in finding promising compounds for a fragment‐based drug discovery campaign. This protocol describes the development of a library suitable for STD‐NMR fragment screening, as well as preparation of protein samples, optimization of experimental conditions, and procedures for data collection and analysis. Curr. Protoc. Chem. Biol. 5:251‐268 © 2013 by John Wiley & Sons, Inc.

Keywords: saturation transfer difference; STD; NMR; fragment screening; fragment‐based hit generation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Direct Identification of Protein Binding Fragments Using One‐Dimensional Proton STD‐NMR Spectroscopy
  • Support Protocol 1: Select NMR Parameters for STD‐NMR Experiments
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Direct Identification of Protein Binding Fragments Using One‐Dimensional Proton STD‐NMR Spectroscopy

  Materials
  • Fragment library molecules, available from a variety of vendors (e.g., Sigma‐Aldrich, TCI, ChemBridge, ChemDiv, Life Chemicals, Maybridge, Alfa Aesar, Acros)
  • Deuterated dimethyl sulfoxide (d 6‐DMSO, >99% D, Aldrich, cat. no. 151882)
  • 1.0 mM 4,4‐dimethyl‐4‐silapentane‐1‐sulfonic acid (DSS, Aldrich, cat. no. 178837) stock in deuterium oxide (D 2O > 99% D)
  • NMR QC buffer (see recipe)
  • 50 µM purified target protein in NMR QC buffer
  • 0.5‐ to 200‐µl pipettors and pipet tips
  • 1.7‐ml microcentrifuge tubes
  • NMR spectrometer (≥ 500 MHz field strength) and processing software

Support Protocol 1: Select NMR Parameters for STD‐NMR Experiments

  Materials
  • NMR sample in NMR tube with cap
  • 500‐MHz NMR spectrometer with acquisition and data processing software
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abad‐Zapatero, C. and Metz, J.T. 2005. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10:464‐469.
  Albert, J.S., Blomberg, N., Breeze, A.L., Brown, A.J., Burrows, J.N., Edwards, P.D., Folmer, R.H., Geschwindner, S., Griffen, E.J., Kenny, P.W., Nowak, T., Olsson, L.L., Sanganee, H., and Shapiro, A.B. 2007. An integrated approach to fragment‐based lead generation: Philosophy, strategy and case studies from AstraZeneca's drug discovery programmes. Curr. Top. Med. Chem. 7:1600‐1629.
  Arroyo, X., Goldflam, M., Feliz, M., Belda, I., and Giralt, E. 2013. Computer‐aided design of fragment mixtures for NMR‐based screening. PLoS One 8:e58571.
  Assadi‐Porter, F.M., Tonelli, M., Maillet, E., Hallenga, K., Benard, O., Max, M., and Markley, J.L. 2008. Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J. Am. Chem. Soc. 130:7212‐7213.
  Assadi‐Porter, F.M., Tonelli, M., Maillet, E.L., Markley, J.L., and Max, M. 2009. Interactions between the human sweet‐sensing T1R2‐T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochim. Biophys. Acta 1798:82‐86.
  Baell, J.B. and Holloway, G.A. 2010. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53:2719‐2740.
  Begley, D.W., Hartley, R.C., Davies, D.R., Edwards, T.E., Leonard, J.T., Abendroth, J., Burris, C.A., Bhandari, J., Myler, P.J., Staker, B.L., and Stewart, L.J. 2011. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei. J. Struct. Funct. Genom. 12:63‐76.
  Blomberg, N., Cosgrove, D.A., Kenny, P.W., and Kolmodin, K. 2009. Design of compound libraries for fragment screening. J. Computer‐Aided Mol. Des. 23:513‐525.
  Boucher, H.W., Talbot, G.H., Benjamin, D.K., Jr., Bradley, J., Guidos, R.J., Jones, R.N., Murray, B.E., Bonomo, R.A., and Gilbert, D. 2013. 10 x '20 progress—Development of new drugs active against Gram‐negative bacilli: An update From the Infectious Diseases Society of America. Clin. Infect. Dis. 56:1685‐1694.
  Card, G.L., Blasdel, L., England, B.P., Zhang, C., Suzuki, Y., Gillette, S., Fong, D., Ibrahim, P.N., Artis, D.R., Bollag, G., Milburn, M.V., Kim, S.H., Schlessinger, J., and Zhang, K.Y. 2005. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold‐based drug design. Nat. Biotechnol. 23:201‐207.
  Chen, I.J. and Hubbard, R.E. 2009. Lessons for fragment library design: Analysis of output from multiple screening campaigns. J. Computer‐Aided Mol. Des. 23:603‐620.
  Chen, J., Zhang, Z., Stebbins, J.L., Zhang, X., Hoffman, R., Moore, A., and Pellecchia, M. 2007. A fragment‐based approach for the discovery of isoform‐specific p38alpha inhibitors. ACS Chem. Biol. 2:329‐336.
  Chessari, G. and Woodhead, A.J. 2009. From fragment to clinical candidate—A historical perspective. Drug Discov. Today 14:668‐675.
  Congreve, M., Carr, R., Murray, C., and Jhoti, H. 2003. A 'rule of three' for fragment‐based lead discovery? Drug Discov. Today 8:876‐877.
  Cruz, C., Cabrita, E.J., and Queiroz, J.A. 2011. Screening nucleotide binding to amino acid‐coated supports by surface plasmon resonance and nuclear magnetic resonance. Analyt. Bioanalyt. Chem. 401:983‐993.
  Davidson, A., Begley, D.W., Lau, C., and Varani, G. 2011. A small‐molecule probe induces a conformation in HIV TAR RNA capable of binding drug‐like fragments. J. Mol. Biol. 410:984‐996.
  Davies, D.R., Mamat, B., Magnusson, O.T., Christensen, J., Haraldsson, M.H., Mishra, R., Pease, B., Hansen, E., Singh, J., Zembower, D., Kim, H., Kiselyov, A.S., Burgin, A.B., Gurney, M.E., and Stewart, L.J. 2009. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J. Med. Chem. 52:4694‐4715.
  Davis, B. 2013. Screening protein–small molecule interactions by NMR. Methods Mol. Biol. 1008:389‐413.
  Davis, B.J. and Erlanson, D.A. 2013. Learning from our mistakes: The ‘unknown knowns’ in fragment screening. Bioorg. Med. Chem. Lett. 23:2844‐2852.
  de Kloe, G.E., Bailey, D., Leurs, R., and de Esch, I.J. 2009. Transforming fragments into candidates: Small becomes big in medicinal chemistry. Drug Discov. Today 14:630‐646.
  Ertl, P., Jelfs, S., Muhlbacher, J., Schuffenhauer, A., and Selzer, P. 2006. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J. Med. Chem. 49:4568‐4573.
  Fattori, D. 2004. Molecular recognition: The fragment approach in lead generation. Drug Discov. Today 9:229‐238.
  Hajduk, P.J. 2006. Fragment‐based drug design: How big is too big? J. Med. Chem. 49:6972‐6976.
  Hajduk, P.J. and Greer, J. 2007. A decade of fragment‐based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov. 6:211‐219.
  Jahnke, W. and Henry, C. 2010. An in vitro assay to measure targeted drug delivery to bone mineral. ChemMedChem 5:770‐776.
  Keseru, G.M. and Makara, G.M. 2006. Hit discovery and hit‐to‐lead approaches. Drug Discov. Today 11:741‐748.
  Lepre, C.A., Moore, J.M., and Peng, J.W. 2004. Theory and applications of NMR‐based screening in pharmaceutical research. Chem. Rev. 104:3641‐3676.
  Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3‐25.
  Mayer, M. and James, T.L. 2004. NMR‐based characterization of phenothiazines as a RNA binding scaffold. J. Am. Chem. Soc. 126:4453‐4460.
  Mayer, M. and Meyer, B. 1999. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38:1784‐1788.
  Mayer, M. and Meyer, B. 2001. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123:6108‐6117.
  McCoy, M.A., Senior, M.M., and Wyss, D.F. 2005. Screening of protein kinases by ATP‐STD NMR spectroscopy. J. Am. Chem. Soc. 127:7978‐7979.
  Meyer, B. and Peters, T. 2003. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 42:864‐890.
  Payne, D.J., Gwynn, M.N., Holmes, D.J., and Pompliano, D.L. 2007. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6:29‐40.
  Pellecchia, M. 2005. Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions. Chem. Biol. 12:961‐971.
  Pellecchia, M., Becattini, B., Crowell, K.J., Fattorusso, R., Forino, M., Fragai, M., Jung, D., Mustelin, T., and Tautz, L. 2004. NMR‐based techniques in the hit identification and optimisation processes. Exp. Opin. Ther. Targets 8:597‐611.
  Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., James, T.L., Homans, S.W., Kessler, H., Luchinat, C., Meyer, B., Oschkinat, H., Peng, J., Schwalbe, H., and Siegal, G. 2008. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev. Drug Discov. 7:738‐745.
  Rees, D.C., Congreve, M., Murray, C.W., and Carr, R. 2004. Fragment‐based lead discovery. Nat. Rev. Drug Discov. 3:660‐672.
  Souard, F., Munoz, E., Penalver, P., Badia, C., del Villar‐Guerra, R., Asensio, J.L., Jimenez‐Barbero, J., and Vicent, C. 2008. Sugar‐oligoamides: Bound‐state conformation and DNA minor‐groove‐binding description by TR‐NOESY and differential‐frequency saturation‐transfer‐difference experiments. Chemistry 14:2435‐2442.
  Wu, B., Zhang, Z., Noberini, R., Barile, E., Giulianotti, M., Pinilla, C., Houghten, R.A., Pasquale, E.B., and Pellecchia, M. 2013. HTS by NMR of combinatorial libraries: A fragment‐based approach to ligand discovery. Chem. Biol. 20:19‐33.
  Wyss, D.F., Wang, Y‐S., and Eaton, H.L. 2012. Combining NMR and X‐ray crystallography in fragment‐based drug discovery: Discovery of highly potent and selective BACE‐1 inhibitors. In Topics in Current Chemistry, Vol. 317: Fragment‐Based Drug Discovery and X‐ray Crystallography (T.G. Davies and M. Hyvönen, eds.) pp. 83‐114. Springer‐Verlag, Berlin.
  Yan, J., Kline, A.D., Mo, H., Shapiro, M.J., and Zartler, E.R. 2003. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J. Magn. Reson. 163:270‐276.
  Zartler, E.R. and Shapiro, M.J. 2005. Fragonomics: Fragment‐based drug discovery. Curr. Opin. Chem. Biol. 9:366‐370.
  Zartler, E.R., Yan, J., Mo, H., Kline, A.D., and Shapiro, M.J. 2003. ID NMR methods in ligand‐receptor interactions. Curr. Top. Med. Chem. 3:25‐37.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library