Preparation and Separation of DNA‐Wrapped Carbon Nanotubes

Geyou Ao1, Ming Zheng1

1 Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch140099
Online Posting Date:  March, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Purification of single‐chirality single‐wall carbon nanotubes (SWCNTs) from their synthetic mixture is a prerequisite for many applications. DNA‐controlled carbon nanotube (CNT) purification has evolved over a decade along with other separation techniques utilizing different types of dispersing agents such as surfactants and polymers. The size of single‐stranded DNA (ssDNA) libraries affords practically unlimited ways of coating SWCNTs. Recent developments in separating surfactant‐dispersed SWCNTs by polymer aqueous two‐phase (ATP) extraction has enabled rapid and efficient SWCNT separation on a larger volume scale. Applying the ATP separation method to DNA‐SWCNT hybrids opens a new route for effective sorting of nanotubes into each and every single‐chirality species. Here, we report protocols for purifying as many as 15 single‐chirality nanotube species from a synthetic mixture based on the separation of DNA‐SWCNTs by the aqueous two‐phase (ATP) method. © 2015 by John Wiley & Sons, Inc.

Keywords: carbon nanotube purification; ATP system; DNA sequences; single‐chirality; modulating agents

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Custom‐made single‐stranded DNA (Integrated DNA Technologies)
  • CoMoCAT SWCNT powders (Southwest Nanotechnologies, SG65 grade, lot no. SG65EX‐002, and SG65i grade, lot no. SG65i‐L46)
  • 0.1 M sodium chloride (NaCl; BDH Chemicals)
  • Polyethylene glycol (PEG, mol. wt. 6 KDa, Alfa Aesar)
  • Polyethylene glycol diamine (PEG‐DA, mol. wt. 6 KDa, Scientific Polymer Products, Inc.)
  • Dextran 70 (DX, mol. wt. ∼70 KDa, TCI)
  • Polyvinylpyrrolidone (PVP, mol. wt. 10 KDa, Sigma‐Aldrich)
  • Polyacrylamide 50 (mass % in H 2O solution; PAM, mol. wt. 10 KDa, Sigma‐Aldrich)
  • Sodium thiocyanate (NaSCN, Sigma‐Aldrich)
  • Sodium deoxycholate (SDC, Sigma‐Aldrich)
  • 1.5‐ml microcentrifuge tubes
  • 15‐and 50‐ml conical centrifuge tubes (e.g., Falcon)
  • Bath sonicator (e.g., model 2510R‐DTH; Branson Ultrasonics Corporation)
  • Tip sonicator (e.g., model VCX 130; Sonics and Materials)
  • Benchtop microcentrifuge (e.g., Heraeus Fresco 17)
  • UV‐vis NIR spectrophotometer (e.g., Varian Cary 5000)
  • 10‐mm path length quartz microcuvettes
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Albertsson, P.A. 1971. Partition of cell particles and macromolecules, 2nd ed. Wiley‐Interscience, New York.
   Ao, G. , Khripin, C.Y. , and Zheng, M 2014. DNA‐controlled carbon nanotube partition in polymer aqueous two‐phase systems. J. Am. Chem. Soc. 136:10383‐10392.
   Dresselhaus, M.S. , Dresselhaus, G. , and Saito, R. 1995. Physics of carbon nanotubes. Carbon 33:883‐891.
   Fagan, J.A. , Khripin, C.Y. , Silvera Batista, C.A. , Simpson, J.R. , Hároz, E.H. , Hight Walker, A.R. , and Zheng, M. 2014. Isolation of specific small‐diameter single‐wall carbon nanotube species via aqueous two‐phase extraction. Adv. Mater., DOI: 10.1002/adma.201304873.
   Khripin, C.Y. , Fagan, J.A. , and Zheng, M. 2013. Spontaneous partition of carbon nanotubes in polymer‐modified aqueous phases. J. Am. Chem. Soc. 135:6822‐6825.
   Subbaiyan, N.K. , Cambré, S. , Parra‐Vasquez, A.N.G. , Hároz, E.H. , Doorn, S.K. , and Duque, J.G. 2014. Role of surfactants and salt in aqueous two‐phase separation of carbon nanotubes towards simple chirality isolation. ACS Nano 8:1619‐1628.
   Tu, X. , Manohar, S. , Jagota, A. , and Zheng, M. 2009. DNA sequence motifs for structure‐specific recognition and separation of carbon nanotubes. Nature 460:250‐253.
   Tu, X. , Hight Walker, A.R. , Khripin, C.Y. , and Zheng, M. 2011. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133:12998‐13001.
   Zaslavsky, B.Y. 1994. Aqueous two‐phase partitioning. Marcel Dekker, New York.
PDF or HTML at Wiley Online Library