Digestion, Purification, and Enrichment of Protein Samples for Mass Spectrometry

Victoria E. Hedrick1, Mercedes N. LaLand1, Ernesto S. Nakayasu1, Lake N. Paul1

1 Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, Indiana
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch140272
Online Posting Date:  September, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Proteomic studies rely heavily on the use of liquid chromatography (LC)–mass spectrometry (MS and MS/MS) analyses to provide information about protein composition and function. Profiling the proteome can be the first step to understanding biological pathways, but the challenges scientists face with the complex nature of proteins and proteolysis products can be daunting. Techniques involving fractionation, immunoprecipitation, and phosphopeptide enrichment can simplify complex protein mixtures and enhance the amount of target proteins that are important to the investigator. Emphasis on sample preparation for LC‐MS/MS analyses is essential to acquisition of high‐quality data for proteomic research. Certain classes of reagents, materials, and contaminants that can be introduced during sample processing may limit the effectiveness of LC‐MS/MS analysis. These protocols outline methods for proteolytic digestion of proteins that are compatible with LC‐MS/MS, along with procedures that allow for simplification of complex protein matrices. © 2015 by John Wiley & Sons, Inc.

Keywords: peptides; phosphopeptide enrichment; protein extraction; fractionation; on‐bead digestion; in‐gel digestion

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: In‐Solution Digestion of a Protein Mixture
  • Alternate Protocol 1: In‐Gel Digestion of a Protein Mixture
  • Alternate Protocol 2: Immunoprecipitation and On‐Bead Digestion of Protein‐Interaction Complexes
  • Basic Protocol 2: Liquid‐Liquid Extraction of Proteins Using Acetone
  • Alternate Protocol 3: Solid‐Phase Extraction of Proteins
  • Basic Protocol 3: Peptide Fractionation for 2D LC‐MS/MS Analysis
  • Basic Protocol 4: Phosphopeptide Enrichment
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: In‐Solution Digestion of a Protein Mixture

  Materials
  • Protein sample
  • Milli‐Q‐purified water
  • Acetone, HPLC grade, −20°C
  • Ammonium bicarbonate (ABC, Sigma‐Aldrich), pH ∼8.1
  • Dithiothreitol (DTT, Sigma‐Aldrich)
  • Urea (reagent grade, 98%; Sigma‐Aldrich, optional)
  • Acetonitrile (ACN), HPLC grade
  • Triethylphosphine (TEP, Sigma‐Aldrich)
  • Iodoethanol (IEtOH, Sigma‐Aldrich)
  • Lys‐C/trypsin mixture, sequencing grade (Promega)
  • Vacuum centrifuge
  • Axygen Maximum Recovery Microtubes
  • Barocycler (Pressure Biosciences)
CAUTION: Use proper protection (hood, safety glasses, gloves, lab coat) when handling iodoethanol and triethylphosphine. IEtOH is a toxic and combustible liquid. TEP is pyrophoric (highly flammable) as a liquid and vapor. Both compounds must be handled in accordance with the material safety data sheets (MSDS).

Alternate Protocol 1: In‐Gel Digestion of a Protein Mixture

  Additional Materials (also see protocol 1)
  • SDS polyacrylamide gel containing protein of interest
  • Potassium ferricyanide (K 3Fe(CN) 6), ACS grade (Sigma‐Aldrich)
  • Sodium sulfite (Na 2SO 3), reagent grade (Sigma‐Aldrich)
  • Iodoacetamide (IAA, Sigma‐Aldrich)
  • Trifluoroacetic acid (TFA, Sigma‐Aldrich)
  • Acetonitrile (ACN), HPLC grade
  • Formic acid (Fluka)
  • Razor blade or scalpel
  • 55°C shaking water bath or heat block
  • 0.5‐ml microcentrifuge tube (e.g., Axygen Maximum Recovery)

Alternate Protocol 2: Immunoprecipitation and On‐Bead Digestion of Protein‐Interaction Complexes

  Additional Materials (also see protocol 1)
  • Sample of bead‐bound Co‐IP complexes (antibody‐antigen‐interacting partners)
  • Trypsin, sequencing grade (Sigma‐Aldrich), optional

Basic Protocol 2: Liquid‐Liquid Extraction of Proteins Using Acetone

  Materials
  • Chloroform (CHCl 3), HPLC grade (Sigma‐Aldrich)
  • Methanol (MeOH), HPLC grade
  • Digested peptide sample (see protocol 1 or protocol 2 or 2)
  • Acetone, HPLC grade (Sigma‐Aldrich), −20°C
  • Vacuum centrifuge

Alternate Protocol 3: Solid‐Phase Extraction of Proteins

  Additional Materials (also see protocol 4)
  • C18 column: silica‐based C18 UltraMicroSpin Column Kit (The Nest Group)
  • Acetonitrile (ACN), HPLC grade
  • Digested peptide sample (see protocol 1 or protocol 2 or 2)
  • Milli‐Q‐purified water
  • Formic acid (Fluka)

Basic Protocol 3: Peptide Fractionation for 2D LC‐MS/MS Analysis

  Materials
  • Protein sample or digested peptides (see Basic Protocols protocol 11 protocol 42 or Alternate Protocols protocol 21 protocol 53)
  • Milli‐Q‐purified water
  • Mobile phase A: 10 mM ammonium formate (Sigma‐Aldrich), pH 10.0, in water
  • Mobile phase B: 10 mM ammonium formate, pH 10.0, in 90% acetonitrile (ACN, HPLC grade)
  • Formic acid (Fluka)
  • High‐performance liquid chromatography (HPLC) equipment with UV detector, fraction collector, and XBridge C18 column (250 × 4.6 mm, 5‐μm particles, Waters)
  • 96‐well plates
  • Vacuum centrifuge

Basic Protocol 4: Phosphopeptide Enrichment

  Materials
  • Magnetic nickel‐nitriloacetic acid (Ni‐NTA) agarose beads, 5% suspension (Qiagen, cat. no. 36111)
  • Milli‐Q‐purified water
  • 100 mM EDTA, pH 8.0 (Sigma‐Aldrich)
  • Ferric chloride (FeCl 3, Sigma‐Aldrich)
  • Acetonitrile (ACN), HPLC grade
  • Methanol (MeOH), HPLC grade
  • Acetic acid, ACS grade (Sigma‐Aldrich)
  • Peptide sample
  • Trifluoroacetic acid (TFA, Sigma‐Aldrich)
  • Ammonium hydroxide (NH 4OH), ACS grade (20‐30%, Mallinckrodt)
  • Microcentrifuge tubes
  • Magnetic tube rack
  • Tube rotator rotator
  • pH test strips
  • Vacuum centrifuge
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aebersold, R. and Goodlett, D.R. 2001. Mass spectrometry in proteomics. Chem. Rev. 101:269‐295.
   Aebersold, R. and Mann, M. 2003. Mass spectrometry‐based proteomics. Nature 422:198‐207.
   Alpert, A.J. 2008. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 80:62‐76.
   Angel, T.E. , Aryal, U.K. , Hengel, S.M. , Baker, E.S. , Kelly, R.T. , Robinson, E.W. , and Smith, R.D. 2012. Mass spectrometry‐based proteomics: Existing capabilities and future directions. Chem. Soc. Rev. 41:3912‐3928.
   Annesley, T.M. 2003. Ion suppression in mass spectrometry. Clin. Chem. 49:1041‐1044.
   Apffel, A. , Fischer, S. , Goldberg, G. , Goodley, P.C. , and Kuhlmann, F.E. 1995. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography‐mass spectrometry in the presence of signal suppression due to trifluoroacetic acid‐containing mobile phases. J. Chromatogr. A 712:177‐190.
   Arnold, T. and Linke, D. 2008. The use of detergents to purify membrane proteins. Curr. Protoc. Protein Sci. 53:4.8.1‐4.8.30.
   Bagshaw, R.D. , Callahan, J.W. , and Mahuran, D.J. 2000. Desalting of in‐gel‐digested protein sample with mini‐C18 columns for matrix‐assisted laser desorption ionization time of flight peptide mass fingerprinting. Anal. Biochem. 284:432‐435.
   Baker, E.N. and Hubbard, R.E. 1984. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44:97‐179.
   Bauer, A. and Kuster, B. 2003. Affinity purification‐mass spectrometry. Powerful tools for the characterization of protein complexes. Eur. J. Biochem. 270:570‐578.
   Berlett, B.S. and Stadtman, E.R. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313‐20316.
   Bjorck, L. and Kronvall, G. 1984. Purification and some properties of streptococcal protein G, a novel IgG‐binding reagent. J. Immunol. 133:969‐974.
   Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911‐917.
   Bodenmiller, B. , Mueller, L.N. , Mueller, M. , Domon, B. , and Aebersold, R. 2007. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 4:231‐237.
   Bolen, D.W. and Rose, G.D. 2008. Structure and energetics of the hydrogen‐bonded backbone in protein folding. Annu. Rev. Biochem. 77:339‐362.
   Brown, R.B. and Audet, J. 2008. Current techniques for single‐cell lysis. J. R. Soc. Interface 5:S131‐S138.
   Chervet, J.P. , Ursem, M. , and Salzmann, J.P. 1996. Instrumental requirements for nanoscale liquid chromatography. Anal. Chem. 68:1507‐1512.
   Chi, A. , Bai, D.L. , Geer, L.Y. , Shabanowitz, J. , and Hunt, D.F. 2007. Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry. Int. J. Mass Spectrom. 259:197‐203.
   Cleland, W.W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480‐482.
   Davis, M.T. , Stahl, D.C. , and Lee, T.D. 1995. Low flow high‐performance liquid chromatography solvent delivery system designed for tandem capillary liquid chromatography‐mass spectrometry. J. Am. Soc. Mass Spectrom. 6:571‐577.
   Dill, K.A. and Shortle, D. 1991. Denatured states of proteins. Annu. Rev. Biochem. 60:795‐825.
   Dix, M.M. , Simon, G.M. , and Cravatt, B.F. 2008. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679‐691.
   Droit, A. , Poirier, G.G. , and Hunter, J.M. 2005. Experimental and bioinformatic approaches for interrogating protein‐protein interactions to determine protein function. J. Mol. Endocrinol. 34:263‐280.
   Dunn, J.D. , Reid, G.E. , and Bruening, M.L. 2010. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 29:29‐54.
   Dwivedi, R.C. , Spicer, V. , Harder, M. , Antonovici, M. , Ens, W. , Standing, K.G. , Wilkins, J.A. , and Krokhin, O.V. 2008. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high‐throughput bottom‐up proteomics. Anal. Chem. 80:7036‐7042.
   Fenn, J.B. , Mann, M. , Meng, C.K. , Wong, S.F. , and Whitehouse, C.M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64‐71.
   Ficarro, S.B. , McCleland, M.L. , Stukenberg, P.T. , Burke, D.J. , Ross, M.M. , Shabanowitz, J. , Hunt, D.F. , and White, F.M. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae . Nat. Biotechnol. 20:301‐305.
   Ficarro, S.B. , Adelmant, G. , Tomar, M.N. , Zhang, Y. , Cheng, V.J. , and Marto, J.A. 2009. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem. 81:4566‐4575.
   Fournier, M.L. , Gilmore, J.M. , Martin‐Brown, S.A. , and Washburn, M.P. 2007. Multidimensional separations‐based shotgun proteomics. Chem. Rev. 107:3654‐3686.
   Fukuyama, H. , Ndiaye, S. , Hoffmann, J. , Rossier, J. , Liuu, S. , Vinh, J. , and Verdier, Y. 2012. On‐bead tryptic proteolysis: An attractive procedure for LC‐MS/MS analysis of the Drosophila caspase 8 protein complex during immune response against bacteria. J. Proteomics 75:4610‐4619.
   Gevaert, K. , Demol, H. , Sklyarova, T. , Vandekerckhove, J. , and Houthaeve, T. 1998. A peptide concentration and purification method for protein characterization in the subpicomole range using matrix assisted laser desorption/ionization‐postsource decay (MALDI‐PSD) sequencing. Electrophoresis 19:909‐917.
   Gharahdaghi, F. , Weinberg, C.R. , Meagher, D.A. , Imai, B.S. , and Mische, S.M. 1999. Mass spectrometric identification of proteins from silver‐stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601‐605.
   Gjelstad, A. , Rasmussen, K.E. , Parmer, M.P. , and Pedersen‐Bjergaard, S. 2013. Parallel artificial liquid membrane extraction: Micro‐scale liquid‐liquid‐liquid extraction in the 96‐well format. Bioanalysis 5:1377‐1385.
   Glatter, T. , Ludwig, C. , Ahrne, E. , Aebersold, R. , Heck, A.J. , and Schmidt, A. 2012. Large‐scale quantitative assessment of different in‐solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys‐C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 11:5145‐5156.
   Gretzer, M.B. , Chan, D.W. , van Rootselaar, C.L. , Rosenzweig, J.M. , Dalrymple, S. , Mangold, L.A. , Partin, A.W. , and Veltri, R.W. 2004. Proteomic analysis of dunning prostate cancer cell lines with variable metastatic potential using SELDI‐TOF. Prostate 60:325‐331.
   Hale, J.E. , Butler, J.P. , Gelfanova, V. , You, J.S. , and Knierman, M.D. 2004. A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal. Biochem. 333:174‐181.
   Han, X. , Aslanian, A. , and Yates, J.R. 3rd. 2008. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12:483‐490.
   Hennion, M.C. 1999. Solid‐phase extraction: Method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A 856:3‐54.
   Horvatovich, P. , Hoekman, B. , Govorukhina, N. , and Bischoff, R. 2010. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J. Sep. Sci. 33:1421‐1437.
   Huang, B.X. and Kim, H.Y. 2013. Effective identification of Akt interacting proteins by two‐step chemical crosslinking, co‐immunoprecipitation and mass spectrometry. PLoS One 8:e61430.
   Ideker, T. , Galitski, T. , and Hood, L. 2001. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2:343‐372.
   Ishihama, Y. , Rappsilber, J. , and Mann, M. 2006. Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J. Proteome Res. 5:988‐994.
   Issaq, H.J. , Chan, K.C. , Janini, G.M. , Conrads, T.P. , and Veenstra, T.D. 2005. Multidimensional separation of peptides for effective proteomic analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817:35‐47.
   Jeno, P. , Mini, T. , Moes, S. , Hintermann, E. , and Horst, M. 1995. Internal sequences from proteins digested in polyacrylamide gels. Anal. Biochem. 224:75‐82.
   Jimenez, C.R. , Huang, L. , Qiu, Y. , and Burlingame, A.L. 2001. In‐gel digestion of proteins for MALDI‐MS fingerprint mapping. Curr. Protoc. Protein. Sci. 14:16.4.1‐16.4.5.
   Johnson, B.H. and Hecht, M.H. 1994. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology (N.Y.) 12:1357‐1360.
   Johnson, H. and White, F.M. 2012. Toward quantitative phosphotyrosine profiling in vivo. Semin. Cell Dev. Biol. 23:854‐862.
   Kallweit, U. , Börnsen, K.O. , Kresbach, G.M. , and Widmer, H.M. 1996. Matrix compatible buffers for analysis of proteins with matrix‐assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 10:845‐849.
   Kanshin, E. , Michnick, S. , and Thibault, P. 2012. Sample preparation and analytical strategies for large‐scale phosphoproteomics experiments. Semin. Cell Dev. Biol. 23:843‐853.
   Kay, I. and Mallet, A.I. 1993. Use of an on‐line liquid chromatography trapping column for the purification of protein samples prior to electrospray mass spectrometric analysis. Rapid Commun. Mass Spectrom. 7:744‐746.
   Kelleher, N.L. 2004. Top‐down proteomics. Anal. Chem. 76:197A‐203A.
   Keller, B.O. , Sui, J. , Young, A.B. , and Whittal, R.M. 2008. Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta 627:71‐81.
   Keshishian, H. , Addona, T. , Burgess, M. , Kuhn, E. , and Carr, S.A. 2007. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell Proteomics 6:2212‐2229.
   Kim, J.H. , Inerowicz, D. , Hedrick, V. , and Regnier, F. 2013. Integrated sample preparation methodology for proteomics: Analysis of native proteins. Anal. Chem. 85:8039‐8045.
   Kim, S.C. , Chen, Y. , Mirza, S. , Xu, Y. , Lee, J. , Liu, P. , and Zhao, Y. 2006. A clean, more efficient method for in‐solution digestion of protein mixtures without detergent or urea. J. Proteome Res. 5:3446‐3452.
   Kotlyar, M. , Pastrello, C. , Pivetta, F. , Lo Sardo, A. , Cumbaa, C. , Li, H. , Naranian, T. , Niu, Y. , Ding, Z. , Vafaee, F. , Broackes‐Carter, F. , Petschnigg, J. , Mills, G.B. , Jurisicova, A. , Stagljar, I. , Mills, G.B. , Maestro, R. , and Jurisica, I. 2015. In silico prediction of physical protein interactions and characterization of interactome orphans. Nat. Methods 12:79‐84.
   Lee, S.W. , Berger, S.J. , Martinovic, S. , Pasa‐Tolic, L. , Anderson, G.A. , Shen, Y. , Zhao, R. , and Smith, R.D. 2002. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc. Natl. Acad. Sci. U.S.A. 99:5942‐5947.
   Link, A.J. and Washburn, M.P. 2014. Analysis of protein composition using multidimensional chromatography and mass spectrometry. Curr. Protoc. Protein Sci. 78:23.1.1‐23.1.25.
   Lippincott, J. and Apostol, I. 1999. Carbamylation of cysteine: A potential artifact in peptide mapping of hemoglobins in the presence of urea. Anal. Biochem. 267:57‐64.
   Loo, R.R. , Dales, N. , and Andrews, P.C. 1994. Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci. 3:1975‐1983.
   Lopez‐Ferrer, D. , Petritis, K. , Hixson, K.K. , Heibeck, T.H. , Moore, R.J. , Belov, M.E. , Camp, D.G. 2nd , and Smith, R.D. 2008. Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly. J. Proteome Res. 7:3276‐3281.
   Lu, X. and Zhu, H. 2005. Tube‐gel digestion: A novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell Proteomics 4:1948‐1958.
   Macek, B. , Mann, M. , and Olsen, J.V. 2009. Global and site‐specific quantitative phosphoproteomics: Principles and applications. Annu. Rev. Pharmacol. Toxicol. 49:199‐221.
   McCarthy, J. , Hopwood, F. , Oxley, D. , Laver, M. , Castagna, A. , Righetti, P.G. , Williams, K. , and Herbert, B. 2003. Carbamylation of proteins in 2‐D electrophoresis—myth or reality? J. Proteome Res. 2:239‐242.
   Motoyama, A. , Xu, T. , Ruse, C.I. , Wohlschlegel, J.A. , and Yates, J.R. 3rd . 2007. Anion and cation mixed‐bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem. 79:3623‐3634.
   Ning, Z. , Hawley, B. , Chiang, C.K. , Seebun, D. , and Figeys, D. 2014. Detecting protein‐protein interactions/complex components using mass spectrometry coupled techniques. Methods Mol. Biol. 1164:1‐13.
   Nunez, O. , Gallart‐Ayala, H. , Martins, C.P. , Lucci, P. , and Busquets, R. 2013. State‐of‐the‐art in fast liquid chromatography‐mass spectrometry for bio‐analytical applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 927:3‐21.
   Olsen, J.V. and Mann, M. 2013. Status of large‐scale analysis of post‐translational modifications by mass spectrometry. Mol. Cell Proteomics 12:3444‐3452.
   Olsen, J.V. , Blagoev, B. , Gnad, F. , Macek, B. , Kumar, C. , Mortensen, P. , and Mann, M. 2006. Global, in vivo, and site‐specific phosphorylation dynamics in signaling networks. Cell 127:635‐648.
   Olszowy, P.P. , Burns, A. , and Ciborowski, P.S. 2013. Pressure‐assisted sample preparation for proteomic analysis. Anal. Biochem. 438:67‐72.
   Pan, J. , Zhang, C. , Zhang, Z. , and Li, G. 2014. Review of online coupling of sample preparation techniques with liquid chromatography. Anal. Chim. Acta 815:1‐15.
   Park, Z.Y. and Russell, D.H. 2000. Thermal denaturation: A useful technique in peptide mass mapping. Anal. Chem. 72:2667‐2670.
   Pedersen‐Bjergaard, S. , Rasmussen, K.E. , and Halversen, T.G. 2000. Liquid‐liquid extraction procedures for sample enrichment in capillary zone electrophoresis. J. Chromatogr. A 902:91‐105.
   Perry, R.H. , Cooks, R.G. , and Noll, R.J. 2008. Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrom. Rev. 27:661‐699.
   Phizicky, E.M. and Fields, S. 1995. Protein‐protein interactions: Methods for detection and analysis. Microbiol. Rev. 59:94‐123.
   Poliwoda, A. and Wieczorek, P.P. 2009. Sample pretreatment techniques for oligopeptide analysis from natural sources. Anal. Bioanal. Chem. 393:885‐897.
   Poole, L.B. , Karplus, P.A. , and Claiborne, A. 2004. Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol. 44:325‐347.
   Pramanik, B.N. , Mirza, U.A. , Ing, Y.H. , Liu, Y.H. , Bartner, P.L. , Weber, P.C. , and Bose, A.K. 2002. Microwave‐enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci. 11:2676‐2687.
   Rezaee, M. , Assadi, Y. , Milani Hosseini, M.R. , Aghaee, E. , Ahmadi, F. , and Berijani, S. 2006. Determination of organic compounds in water using dispersive liquid‐liquid microextraction. J. Chromatogr. A 1116:1‐9.
   Rigbolt, K.T. and Blagoev, B. 2012. Quantitative phosphoproteomics to characterize signaling networks. Semin. Cell Dev. Biol. 23:863‐871.
   Rinner, O. , Mueller, L.N. , Hubalek, M. , Muller, M. , Gstaiger, M. , and Aebersold, R. 2007. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat. Biotechnol. 25:345‐352.
   Rocchiccioli, S. , Citti, L. , Boccardi, C. , Ucciferri, N. , Tedeschi, L. , Lande, C. , Trivella, M.G. , and Cecchettini, A. 2010. A gel‐free approach in vascular smooth muscle cell proteome: Perspectives for a better insight into activation. Proteome Sci. 8:15.
   Russell, W.K. , Park, Z.Y. , and Russell, D.H. 2001. Proteolysis in mixed organic‐aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal. Chem. 73:2682‐2685.
   Sandoval, W. 2014. Matrix‐assisted laser desorption/ionization time‐of‐flight mass analysis of peptides. Curr. Protoc. Protein Sci. 77:16.2.1‐16.2.11.
   Saraji, M. and Boroujeni, M.K. 2014. Recent developments in dispersive liquid‐liquid microextraction. Anal. Bioanal. Chem. 406:2027‐2066.
   Shevchenko, A. , Tomas, H. , Havlis, J. , Olsen, J.V. , and Mann, M. 2006. In‐gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1:2856‐2860.
   Sommer, F. , Muhlhaus, T. , Hemme, D. , Veyel, D. , and Schroda, M. 2014. Identification and validation of protein‐protein interactions by combining co‐immunoprecipitation, antigen competition, and stable isotope labeling. Methods Mol. Biol. 1188:245‐261.
   Stoscheck, C.M. 1990. Quantitation of protein. Methods Enzymol. 182:50‐68.
   Sun, W. , Gao, S. , Wang, L. , Chen, Y. , Wu, S. , Wang, X. , Zheng, D. , and Gao, Y. 2006. Microwave‐assisted protein preparation and enzymatic digestion in proteomics. Mol. Cell Proteomics 5:769‐776.
   Tran, J.C. , Zamdborg, L. , Ahlf, D.R. , Lee, J.E. , Catherman, A.D. , Durbin, K.R. , Tipton, J.D. , Vellaichamy, A. , Kellie, J.F. , Li, M. , Wu, C. , Sweet, S.M. , Early, B.P. , Siuti, N. , LeDuc, R.D. , Compton, P.D. , Thomas, P.M. , and Kelleher, N.L. 2011. Mapping intact protein isoforms in discovery mode using top‐down proteomics. Nature 480:254‐258.
   Udeshi, N.D. , Shabanowitz, J. , Hunt, D.F. , and Rose, K.L. 2007. Analysis of proteins and peptides on a chromatographic timescale by electron‐transfer dissociation MS. FEBS J. 274:6269‐6276.
   van den Broek, I. , Sparidans, R.W. , Schellens, J.H. , and Beijnen, J.H. 2008. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 872:1‐22.
   Villen, J. and Gygi, S.P. 2008. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3:1630‐1638.
   Vuckovic, D. , Dagley, L.F. , Purcell, A.W. , and Emili, A. 2013. Membrane proteomics by high performance liquid chromatography–tandem mass spectrometry: Analytical approaches and challenges. Proteomics 13:404‐423.
   Wang, Y. , Yang, F. , Gritsenko, M.A. , Wang, Y. , Clauss, T. , Liu, T. , Shen, Y. , Monroe, M.E. , Lopez‐Ferrer, D. , Reno, T. , Moore, R.J. , Klemke, R.L. , Camp, D.G. 2nd , and Smith, R.D. 2011. Reversed‐phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11:2019‐2026.
   Williams, N.E. 2000. Immunoprecipitation procedures. Methods Cell Biol. 62:449‐453.
   Wisniewski, J.R. , Zougman, A. , Nagaraj, N. , and Mann, M. 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6:359‐362.
   Wright, E.P. , Partridge, M.A. , Padula, M.P. , Gauci, V.J. , Malladi, C.S. , and Coorssen, J.R. 2014. Top‐down proteomics: Enhancing 2D gel electrophoresis from tissue processing to high‐sensitivity protein detection. Proteomics 14:872‐889.
   Xie, J. , Miao, Y. , Shih, J. , Tai, Y.C. , and Lee, T.D. 2005. Microfluidic platform for liquid chromatography‐tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem. 77:6947‐6953.
   Xiu, L. , Valeja, S.G. , Alpert, A.J. , Jin, S. , and Ge, Y. 2014. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top‐down proteomics. Anal. Chem. 86:7899‐7906.
   Xu, L. , Basheer, C. , and Lee, H.K. 2007. Developments in single‐drop microextraction. J. Chromatogr. A 1152:184‐192.
   Yao, J. , Scott, J.R. , Young, M.K. , and Wilkins, C.L. 1998. Importance of matrix:analyte ratio for buffer tolerance using 2,5‐dihydroxybenzoic acid as a matrix in matrix‐assisted laser desorption/ionization‐Fourier transform mass spectrometry and matrix‐assisted laser desorption/ionization‐time of flight. J. Am. Soc. Mass Spectrom. 9:805‐813.
   Yates, J.R. 3rd . 2004. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33:297‐316.
   Yeung, Y.G. , Nieves, E. , Angeletti, R.H. , and Stanley, E.R. 2008. Removal of detergents from protein digests for mass spectrometry analysis. Anal. Biochem. 382:135‐137.
   Yoshida, T. 2004. Peptide separation by hydrophilic‐interaction chromatography: A review. J. Biochem. Biophys. Methods 60:265‐280.
   Zhang, J. , Lanham, K.A. , Peterson, R.E. , Heideman, W. , and Li, L. 2010. Characterization of the adult zebrafish cardiac proteome using online pH gradient strong cation exchange‐RP 2D LC coupled with ESI MS/MS. J. Sep. Sci. 33:1462‐1471.
Internet Resources
   http://masspec.scripps.edu/services/proteomics/saltol.php
  Salt tolerance table from the Scripps Center for Metabolomics and Mass Spectrometry.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library