Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids

Vanessa E. Cox1, Eric A. Gaucher2

1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, 2 School of Biology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/9780470559277.ch150115
Online Posting Date:  December, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein‚Äźtranslation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process. ¬© 2015 by John Wiley & Sons, Inc.

Keywords: unnatural amino acid; directed evolution; protein translation; ancestral proteins; protein engineering

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Translation of Unnatural Amino Acids
  • Orthogonal Translation Components
  • Directed Evolution
  • Higher‐Order Directed Evolution
  • Conclusion
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Bock, A., Forchhammer, K., Heider, J., Leinfelder, W., Sawers, G., Veprek, B., and Zinoni, F. 1991. Selenocysteine—the 21st amino‐acid. Mol. Microbiol. 5:515‐520. doi: 10.1111/j.1365‐2958.1991.tb00722.x.
  Cole, M.F. and Gaucher, E.A. 2011. Utilizing natural diversity to evolve protein function: Applications towards thermostability. Curr. Opin. Chem. Biol. 15:399‐406. doi: 10.1016/j.cbpa.2011.03.005.
  Doi, Y., Ohtsuki, T., Shimizu, Y., Ueda, T., and Sisido, M. 2007. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J. Am. Chem. Soc. 129:14458‐14462. doi: 10.1021/ja075557u.
  Duro‐Castano, A., Conejos‐Sanchez, I., and Vicent, M.J. 2014. Peptide‐based polymer therapeutics. Polymers 6:515‐551. doi: 10.3390/polym6020515.
  Elliott, T.S., Bianco, A., and Chin, J.W. 2014. Genetic code expansion and bioorthogonal labelling enables cell specific proteomics in an animal. Curr. Opin. Chem. Biol. 21:154‐160. doi: 10.1016/j.cbpa.2014.07.001.
  Gaucher, E.A., Thomson, J.M., Burgan, M.F., and Benner, S.A. 2003. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285‐288. doi: 10.1038/nature01977.
  Gentilucci, L., De Marco, R., and Cerisoli, L. 2010. Chemical modifications designed to improve peptide stability: Incorporation of non‐natural amino acids, pseudo‐peptide bonds, and cyclization. Curr. Pharm. Des. 16:3185‐3203. doi: 10.2174/138161210793292555.
  Goldsmith, M. and Tawfik, D.S. 2013. Enzyme engineering by targeted libraries. Methods Enzymol. 523:257‐283.
  Goto, Y., Katoh, T., and Suga, H. 2011. Flexizymes for genetic code reprogramming. Nat. Protoc. 6:779‐790. doi: 10.1038/nprot.2011.331.
  Hartman, M.C.T., Josephson, K., Lin, C.W., and Szostak, J.W. 2007. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PloS One 2:e972.
  Ieong, K.W., Pavlov, M.Y., Kwiatkowski, M., Forster, A.C., and Ehrenberg, M. 2012. Inefficient delivery but fast peptide bond formation of unnatural L‐Aminoacyl‐tRNAs in translation. J. Am. Chem. Soc. 134:17955‐17962. doi: 10.1021/ja3063524.
  Josephson, K., Hartman, M.C.T., and Szostak, J.W. 2005. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127:11727‐11735. doi: 10.1021/ja0515809.
  Khersonsky, O. and Tawfik, D.S. 2010. Enzyme promiscuity: A mechanistic and evolutionary perspective. Ann. Rev. Biochem. 79:471‐505.
  Lang, K. and Chin, J.W. 2014. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114:4764‐4806. doi: 10.1021/cr400355w.
  LaRiviere, F.J., Wolfson, A.D., and Uhlenbeck, O.C. 2001. Uniform binding of aminoacyl‐tRNAs to elongation factor Tu by thermodynamic compensation. Science 294:165‐168. doi: 10.1126/science.1064242.
  Liberles, D.A. 2007. Ancestral Sequence Reconstruction. Oxford University Press, New York.
  Liu, C.C. and Schultz, P.G. 2010. Adding new chemistries to the genetic code. Ann. Rev. Biochem. 79:413‐444.
  Merrifield, R.B. 1969. Solid‐phase peptide synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 32:221‐296.
  Park, H.S., Hohn, M.J., Umehara, T., Guo, L.T., Osborne, E.M., Benner, J., Noren, C.J., Rinehart, J., and Soll, D. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151‐1154. doi: 10.1126/science.1207203.
  Risso, V.A., Gavira, J.A., Mejia‐Carmona, D.F., Gaucher, E.A., and Sanchez‐Ruiz, J.M. 2013. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian beta‐lactamases. J. Am. Chem. Soc. 135:2899‐2902. doi: 10.1021/ja311630a.
  Santoro, S.W., Wang, L., Herberich, B., King, D.S., and Schultz, P.G. 2002. An efficient system for the evolution of aminoacyl‐tRNA synthetase specificity. Nat. Biotechnol. 20:1044‐1048. doi: 10.1038/nbt742.
  Sievers, A., Beringer, M., Rodnina, M.V., and Wolfenden, R. 2004. The ribosome as an entropy trap. Proc. Natl. Acad. Sci. U.S.A. 101:7897‐7901. doi: 10.1073/pnas.0402488101.
  Smith, M.T., Wilding, K.M., Hunt, J.M., Bennett, A.M., and Bundy, B.C. 2014. The emerging age of cell‐free synthetic biology. Febs Lett. 588:2755‐2761. doi: 10.1016/j.febslet.2014.05.062.
  Stephanopoulos, N. and Francis, M.B. 2011. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 7:876‐884. doi: 10.1038/nchembio.720.
  Stephanopoulos, N., Tong, G.J., Hsiao, S.C., and Francis, M.B. 2010. Dual‐surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4:6014‐6020. doi: 10.1021/nn1014769.
  Wallat, J.D., Rose, K.A., and Pokorski, J.K. 2014. Proteins as substrates for controlled radical polymerization. Polym. Chem. 5:1545‐1558. doi: 10.1039/C3PY01193C.
  Walsh, C.T. 2014. Blurring the lines between ribosomal and nonribosomal peptide scaffolds. ACS Chem. Biol. 9:1653‐1661. doi: 10.1021/cb5003587.
  Wang, L. and Schultz, P.G. 2001. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8:883‐890. doi: 10.1016/S1074‐5521(01)00063‐1.
  Yanagisawa, T., Umehara, T., Sakamoto, K., and Yokoyama, S. 2014. Expanded genetic code technologies for incorporating modified lysine at multiple sites. Chembiochem 15:2181‐2187. doi: 10.1002/cbic.201402266.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library