Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications

Emily P. Nguyen1, Torben Daeneke2, Serge Zhuiykov3, Kourosh Kalantar‐zadeh2

1 Division of Materials Science and Engineering, CSIRO, Clayton, Victoria, 2 School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, 3 Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University Global Campus, Incheon, South Korea
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.3
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Known to possess distinctive properties that differ greatly from their bulk form, layered two‐dimensional materials have been extensively studied and incorporated into many versatile applications ranging from optoelectronics to sensors. For biomedical research, two‐dimensional transition metal dichalcogenides (2D TMDs) have garnered much interest as they have been shown to exhibit relatively low toxicity, high stability in aqueous environments, and the ability to adhere to biological materials such as proteins. These materials are promising candidates, demonstrating potential applications in biosensing, cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDs play an important part in these various applications as their properties are heavily dependent on the number of layers and lateral size. Described in this article are protocols for the liquid exfoliation of 2D TMDs from their bulk materials. Additional protocols are also provided for functionalizing or modifying the surface of the exfoliated 2D TMDs. © 2016 by John Wiley & Sons, Inc.

Keywords: exfoliation; functionalization; ion intercalation; liquid phase exfoliation; transition metal dichalcogenides

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Electrochemical Method for Intercalation Exfoliation of Transition Metal Dichalcogenides
  • Alternate Protocol 1: Chemical Intercalation to Exfoliate Transition Metal Dichalcogenides
  • Basic Protocol 2: Sonication‐Assisted Liquid Exfoliation of Transition Metal Dichalcogenides
  • Support Protocol 1: Changing Suspension Solvents by Evaporation
  • Support Protocol 2: Centrifugation to Separate 2D Material from Solvent
  • Support Protocol 3: Postexfoliation Functionalization or Surface Modification of 2D Transition Metal Dichalcogenides
  • Support Protocol 4: Functionalization or Surface Modification of 2D Transition Metal Dichalcogenides Simultaneously During Sonication
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Electrochemical Method for Intercalation Exfoliation of Transition Metal Dichalcogenides

  Materials
  • Bulk TMD powder (e.g., Sigma Aldrich)
  • Acetylene black
  • Polyvinylidene fluoride (PVDF)
  • N‐methyl‐pyrrolidone (NMP)
  • Copper foil
  • Ethyl carbonate
  • Dimethyl carbonate
  • Lithium hexafluorophosphate (LiPF 6)
  • Lithium (Li) foil
  • Argon gas supply
  • Acetone
  • Ethanol
  • Solvent appropriate for the product of interest
  • Galvanostatic power supply
  • Glove box with argon gas inlet (required if Li foil is used as the anode)
  • Glass sample vial
  • Bath or probe sonicator
  • Centrifuge tubes
  • Centrifuge

Alternate Protocol 1: Chemical Intercalation to Exfoliate Transition Metal Dichalcogenides

  Materials
  • Argon gas supply
  • Bulk TMD powder (e.g., Sigma Aldrich)
  • 1.6 M n‐butyl lithium in hexanes
  • Hexane
  • Solvent appropriate for the product of interest
  • Glove box with argon gas inlet
  • 20‐ or 40‐ml sample vials
  • Vacuum filtration apparatus
  • Bath sonicator
  • Centrifuge tubes
  • Centrifuge

Basic Protocol 2: Sonication‐Assisted Liquid Exfoliation of Transition Metal Dichalcogenides

  Materials
  • Bulk TMD powder (e.g., Sigma Aldrich)
  • Solvent(s) of choice
  • Glass sample vials
  • Bath or probe sonicator
  • Centrifuge tubes
  • Centrifuge

Support Protocol 1: Changing Suspension Solvents by Evaporation

  Materials
  • Exfoliated TMD suspension
  • Intended suspension solvent
  • Glass petri dish
  • Hot plate
  • Vacuum oven (optional)
  • Fume cupboard
  • Sample vial
  • Bath sonicator

Support Protocol 2: Centrifugation to Separate 2D Material from Solvent

  Materials
  • Exfoliated TMD suspension
  • Intended suspension solvent
  • Centrifuge tubes
  • High‐speed centrifuge (>13,500 × g)
  • Bath sonicator

Support Protocol 3: Postexfoliation Functionalization or Surface Modification of 2D Transition Metal Dichalcogenides

  Materials
  • Exfoliated TMD suspension
  • Surface modification/functionalization agent
  • Sample vial
  • Magnetic plate with stir bars that fit into the sample vial
  • Bath sonicator
  • Dialysis tubing
  • Centrifuge

Support Protocol 4: Functionalization or Surface Modification of 2D Transition Metal Dichalcogenides Simultaneously During Sonication

  Materials
  • Surface modification/functionalization agent
  • Bulk TMD powder (e.g., Sigma Aldrich)
  • Solvent appropriate for the product of interest
  • Centrifuge tube
  • Bath sonicator
  • Centrifuge
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ashley, C.E., Carnes, E.C., Phillips, G.K., Padilla, D., Durfee, P.N., Brown, P.A., Hanna, T.N., Liu, J., Phillips, B., Carter, M.B., Carroll, N.J., Jiang, X., Dunphy, D.R., Willman, C.L., Petsev, D.N., Evans, D.G., Parikh, A.N., Chackerian, B., Wharton, W., Peabody, D.S., and Brinker, C.J. 2011. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle‐supported lipid bilayers. Nat. Mater. 10:389‐397. doi: 10.1038/nmat2992.
  Balendhran, S., Walia, S., Nili, H., Ou, J.Z., Zhuiykov, S., Kaner, R.B., Sriram, S., Bhaskaran, M., and Kalantar‐zadeh, K. 2013. Two‐dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23:3952‐3970. doi: 10.1002/adfm.201300125.
  Carey, B.J., Daeneke, T., Nguyen, E.P., Wang, Y., Zhen Ou, J., Zhuiykov, S., and Kalantar‐zadeh, K. 2015. Two solvent grinding sonication method for the synthesis of two‐dimensional tungsten disulphide flakes. Chem. Commun. 51:3770‐3773. doi: 10.1039/C4CC08399G.
  Chen, Y., Tan, C., Zhang, H., and Wang, L. 2015. Two‐dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44:2681‐2701. doi: 10.1039/C4CS00300D.
  Chhowalla, M., Liu, Z., and Zhang, H. 2015. Two‐dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44:2584‐2586. doi: 10.1039/C5CS90037A.
  Chng, E.L.K. and Pumera, M. 2015. Toxicity of graphene related materials and transition metal dichalcogenides. RSC Adv. 5:3074‐3080. doi: 10.1039/C4RA12624F.
  Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.‐Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., and Nicolosi, V. 2011. Two‐dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568‐571. doi: 10.1126/science.1194975.
  Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., Shaffer, M.S.P., and Coleman, J.N. 2012. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6:3468‐3480. doi: 10.1021/nn300503e.
  Duan, X., Wang, C., Pan, A., Yu, R., and Duan, X. 2015. Two‐dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 44:8859‐8876. doi: 10.1039/C5CS00507H.
  Guan, G., Zhang, S., Liu, S., Cai, Y., Low, M., Teng, C.P., Phang, I.Y., Cheng, Y., Duei, K.L., Srinivasan, B.M., Zheng, Y., Zhang, Y.‐W., and Han, M.‐Y. 2015. Protein induces layer‐by‐layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 137:6152‐6155. doi: 10.1021/jacs.5b02780.
  Huo, C., Yan, Z., Song, X., and Zen, H. 2015. 2D materials via liquid exfoliation: A review on fabrication and application. Sci. Bull. 60:1994‐2008. doi: 10.1007/s11434‐015‐0936‐3.
  Kalantar‐zadeh, K. and Ou, J.Z. 2016. Biosensors based on two‐dimensional MoS2. ACS Sens. 1:5‐16. doi: 10.1021/acssensors.5b00142.
  Kalantar‐zadeh, K., Ou, J.Z., Daeneke, T., Strano, M.S., Pumera, M., and Gras, S.L. 2015. Two‐dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25:5086‐5099. doi: 10.1002/adfm.201500891.
  Liu, T., Wang, C., Gu, X., Gong, H., Cheng, L., Shi, X., Feng, L., Sun, B., and Liu, Z. 2014. Drug delivery with PEGylated MoS2 nano‐sheets for combined photothermal and chemotherapy of cancer. Adv. Mat. 26:3433‐3440. doi: 10.1002/adma.201305256.
  Nguyen, E.P., Carey, B.J., Daeneke, T., Ou, J.Z., Latham, K., Zhuiykov, S., and Kalantar‐zadeh, K. 2015a. Investigation of two‐solvent grinding‐assisted liquid phase exfoliation of layered MoS2. Chem. Mater. 27:53‐59. doi: 10.1021/cm502915f.
  Nguyen, E.P., Carey, B.J., Ou, J.Z., van Embden, J., Gaspera, E.D., Chrimes, A.F., Spencer, M.J.S., Zhuiykov, S., Kalantar‐zadeh, K., and Daeneke, T. 2015b. Electronic tuning of 2D MoS2 through surface functionalization. Adv. Mater. 27:6225‐6229. doi: 10.1002/adma.201503163.
  Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N. 2013. Liquid exfoliation of layered materials. Science 340:6139. doi: 10.1126/science.1226419.
  O'Neill, A., Khan, U., and Coleman, J.N. 2012. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24:2414‐2421. doi: 10.1021/cm301515z.
  Presolski, S. and Pumera, M. 2015. Covalent functionalization of MoS2. Mater. Today [ePub ahead of print]. doi:10.1016/j.mattod.2015.08.019.
  Tan, C. and Zhang, H. 2015. Two‐dimensional transition metal dichalcogenide nanosheet‐based composites. Chem. Soc. Rev. 44:2713‐2731. doi: 10.1039/C4CS00182F.
  Tang, Q. and Zhou, Z. 2013. Graphene‐analogous low‐dimensional materials. Prog. Mater. Sci. 58:1244‐1315. doi: 10.1016/j.pmatsci.2013.04.003.
  Wang, Q.H., Kalantar‐Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S. 2012. Electronics and optoelectronics of two‐dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699‐712. doi: 10.1038/nnano.2012.193.
  Wang, L., Wang, Y., Wong, J.I., Palacios, T., Kong, J., and Yang, H.Y. 2014. Functionalized MoS2 nanosheet‐based field‐effect biosensor for label‐free sensitive detection of cancer marker proteins in solution. Small 10:1101‐1105. doi: 10.1002/smll.201302081.
  Yao, Y., Tolentino, L., Yang, Z., Song, X., Zhang, W., Chen, Y., and Wong, C.‐p. 2013. High‐concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23:3577‐3583. doi: 10.1002/adfm.201201843.
  Zhou, L., He, B., Yang, Y., and He, Y. 2014. Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 4:32570‐32578. doi: 10.1039/C4RA04682J.
  Zhou, K.‐G., Mao, N.‐N., Wang, H.‐X., Peng, Y., and Zhang, H.‐L. 2011. A mixed‐solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50:10839‐10842. doi: 10.1002/anie.201105364.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library