Enriching s4U‐RNA Using Methane Thiosulfonate (MTS) Chemistry

Erin E. Duffy1, Matthew D. Simon2

1 Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, 2 Chemical Biology Institute, Yale University, West Haven, Connecticut
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.12
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Metabolic labeling of cellular RNA is a useful approach to study RNA biology. 4‐Thiouridine (s4U) is a convenient nucleoside for metabolic labeling because it is cell permeable and is incorporated into newly transcribed RNA, and the sulfur moiety provides a handle for biochemical purification. However, a critical step in the purification of s4U‐RNA is the efficiency of the chemistry used to enrich s4U‐RNA. Here, we present a protocol for s4U‐RNA enrichment that includes efficient and reversible covalent chemistry to biotinylate s4U‐RNA using the activated disulfide methane thiosulfonate conjugated to biotin (MTS‐biotin), followed by enrichment on streptavidin beads. The efficiency of this chemistry reduces enrichment bias and requires less starting material, thereby expanding the utility of s4U to study RNA biology. © 2016 by John Wiley & Sons, Inc.

Keywords: metabolic labeling; 4‐thiouridine; methane thiosulfonate; RNA metabolism

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Cultured cells (e.g., HEK293T cells; at least 1 × 106)
  • RPE1 medium (see recipe)
  • 4‐thiouridine (s4U; MP Biomedicals, cat. no. 0215213405
  • TRIzol reagent (Life Technologies, cat. no 15596‐026)
  • Chloroform (AmericanBio, cat. no. AB00350‐00500)
  • 100% isopropanol
  • Dithiothreitol (DTT; VWR International, cat. no. EM‐3860)
  • 20 mg/ml glycogen (RNase‐free; AmericanBio, cat. no AB00670‐00020)
  • 100% and 75% ethanol, RNA‐grade
  • DEPC‐treated water (Life Technologies, cat. no. AM9906)
  • TURBO DNase (Life Technologies, cat. no. AM2238) and10× TURBO DNase reaction buffer
  • 3 M sodium acetate, pH 5.5
  • 25:24:1 (v/v/v) phenol:chloroform:isoamyl alcohol, pH 7.7 to 8.3 (Sigma Aldrich, cat. no. 77617‐100 ML)
  • 2× RNA fragmentation buffer (see recipe)
  • 250 mM and 0.5 M disodium EDTA (Sigma Aldrich, cat. no. E5134‐500 G)
  • RNeasy Mini Kit (Qiagen, cat. no. Q74106)
  • 2‐mercaptoethanol (Sigma Aldrich, cat. no. M3148‐25 ML)
  • MTSEA‐biotin‐XX (Biotium, cat. no. 89139‐636)
  • Dimethyl formamide (J.T. Baker, cat. no. 9344‐13)
  • 1 M HEPES, pH 7.4
  • 24:1 chloroform:isoamyl alcohol (Fisher Scientific, cat. no. 3160‐450 ML)
  • High‐salt wash buffer
  • Bead‐blocking buffer (see recipe)
  • Dynabeads MyOne Streptavidin C1 magnetic beads (Life Technologies, cat. no. 65001)
  • Elution buffer (see recipe)
  • Qubit RNA HS assay kit (Thermo Fisher Scientific, cat. no. Q32855)
  • Ambion century plus RNA marker (Thermo Fisher Scientific, cat. no. AM7145)
  • MAXIscript T7 transcription kit (Thermo Fisher Scientific, cat. no. AM1312)
  • Cy5‐CTP (GE Healthcare, cat. no. 25‐8010‐87)
  • 4‐thiouridine‐5′‐triphosphate (s4UTP; Trilink Bio, cat. no. N‐1025)
  • SequaGel UreaGel 29:1 Denaturing Gel System (National Diagnostics, cat. no. EC‐829)
  • Ammonium persulfate
  • 1× TBE buffer (see recipe)
  • 6‐well culture plate
  • Refrigerated centrifuge
  • Gel‐loading tips
  • Nanodrop 2000c Spectrophotometer (Thermo Fisher Scientific, cat. no. ND‐2000c)
  • Phase‐lock gel tubes, heavy, 1.5‐ml (5‐Prime, cat. no. FP2302820)
  • UV‐vis spectrophotometer
  • 94°C heat block
  • Rotator (Glas‐Col, cat. no. 099 A MR1512)
  • MagRack 6 magnetic stand (GE Healthcare, cat. no. 28948964)
  • PCR tube strips
  • DynaMag 96 side magnet (magnetic rack for 96‐well plates; Life Technologies, cat. no. 12331D)
  • Qubit 3.0 Fluorometer (Thermo Fisher Scientific, cat. no. Q33216)
  • 15‐ml conical tubes (e.g., Corning Falcon)
  • Gel cassettes 1.0 mm (Life Sciences, cat. no. NC2010)
  • 10‐well comb
  • Typhoon FLA 9500 gel scanner (GE Healthcare) with Cy5 fluorescence filters
  • Additional reagents and equipment for gel electrophoresis (Gallagher, )
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Burger, K., Mühl, B., Kellner, M., Rohrmoser, M., Gruber‐Eber, A., Windhager, L., Friedel, C.C., Dölken, L., and Eick, D. 2013. 4‐thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol. 10:1623‐1630. doi: 10.4161/rna.26214.
  Burow, D.A., Umeh‐Garcia, M.C., True, M.B., Bakhai, C.D., Ardell, D.H., and Cleary, M.D. 2015. Dynamic regulation of mRNA decay during neural development. Neural Dev. 10:11. doi: 10.1186/s13064‐015‐0038‐6.
  Cleary, M., Meiering, C., Jan, E., Guymon, R., and Boothroyd, J. 2005. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell‐specific microarray analysis of mRNA synthesis and decay. Nat. Biotechnol. 23:232‐237. doi: 10.1038/nbt1061.
  Dölken, L., Ruzsics, Z., Rädle, B., Friedel, C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., and Koszinowski, U.H. 2008. High‐resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14:1959‐1972. doi: 10.1261/rna.1136108.
  Duffy, E.E., Rutenberg‐Schoenberg, M., Stark, C.D., Kitchen, R.R., Gerstein, M.B., and Simon, M.D. 2015. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell 59:858‐866. doi: 10.1016/j.molcel.2015.07.023.
  Favre, A. Bezerra, R., Hajnsdorf, E., Lemaigre Dubreuil, Y., and Expert‐Bezançon, A. 1986. Substitution of uridine in vivo by the intrinsic photoactivable probe 4‐thiouridine in Escherichia coli RNA. Its use for E. coli ribosome structural analysis. Eur. J. Biochem. 160:441‐449. doi: 10.1111/j.1432‐1033.1986.tb10060.x.
  Fuchs, G., Voichek, Y., Benjamin, S., Gilad, S., Amit, I., and Oren, M. 2014. 4sUDRB‐seq: Measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15:R69. doi: 10.1186/gb‐2014‐15‐5‐r69.
  Gallagher, S.R. 2012. One‐dimensional SDS gel electrophoresis of proteins. Curr. Protoc. Mol. Biol. 97:10.2A.1‐10.2A.44.
  Gregersen, L.H., Schueler, M., Munschauer, M., Mastrobuoni, G., Chen, W., Kempa, S., Dieterich, C., and Landthaler, M. 2014. MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 54:573‐585. doi: 10.1016/j.molcel.2014.03.017.
  Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jungkamp, A.‐C., Munschauer, M., Ulrich, A., Wardle, G.S., Dewell, S., Zavolan, M., and Tuschl, T. 2010. Transcriptome‐wide identification of RNA‐binding protein and microRNA target sites by PAR‐CLIP. Cell 141:129‐141. doi: 10.1016/j.cell.2010.03.009.
  Jao, C.Y. and Salic, A. 2008. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U.S.A. 105: 15779‐15784. doi: 10.1073/pnas.0808480105.
  Kenyon, G.L. and Bruice, T.W. 1976. Novel sulfhydryl reagents. Methods Enzymol. 47:407‐430. doi: 10.1016/0076‐6879(77)47042‐3.
  Miller, M.R., Robinson, K.J., Cleary, M.D., and Doe, C.Q. 2009. TU‐tagging: Cell type‐specific RNA isolation from intact complex tissues. Nat. Methods 6:439‐441. doi: 10.1038/nmeth.1329.
  Miller, C., Schwalb, B., Maier, K., Schulz, D., Dümcke, S., Zacher, B., Mayer, A., Sydow, J., Marcinowski, J., Dölken, L., Martin, D.E., Tresch, A., and Cramer, P. 2011. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 7:458. doi: 10.1038/msb.2010.112.
  Qin, P.Z., Hideg, K., Feigon, J., and Hubbell, W.L. 2003. Monitoring RNA base structure and dynamics using site‐directed spin labeling. Biochem 42:6772‐6783. doi: 10.1021/bi027222p.
  Rabani, M., Levin, J.Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M., Gnirke, A., Nusbaum, C., Hacohen, N., Friedman, N., Amit, I., and Regev, A. 2011. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29:436‐442. doi: 10.1038/nbt.1861.
  Schwalb, B. Michel, M., Kacher, B., Frühauf, K., Demel, C., Tresch, A., Gagneur, J., and Cramer, P. 2016. TT‐seq maps the human transient transcriptome. Science 352:1225‐1228. doi: 10.1126/science.aad9841.
  Spitzer, J., Hafner, M., Landthaler, M., Ascano, M., Farazi, T., Wardle, G., Nusbaum, J., Khorshid, M., Burger, L., Zavolan, M., and Tuschl, T. 2014. PAR‐CLIP (photoactivatable ribonucleoside‐enhanced crosslinking and immunoprecipitation): A step‐by‐step protocol to the transcriptome‐wide identification of binding sites of RNA‐binding proteins. Methods Enzymol. 539:113‐161. doi: 10.1016/B978‐0‐12‐420120‐0.00008‐6.
  Sun, M., Schwalb, B., Schulz, D., Pirkl, N., Etzold, S., Larivière, L., Maier, K.C., Seizl, M., Tresch, A., and Cramer, P. 2012. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 22:1350‐1359. doi: 10.1101/gr.130161.111.
  Tani, H. and Akimitsu, N. 2012. Genome‐wide technology for determining RNA stability in mammalian cells: Historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol. 9:1233‐1238. doi: 10.4161/rna.22036.
  Tani, H., Mizutani, R., Salam, K.A., Tano, K., Ijiri, K., Wakamatsu, A., Isogai, T., Suzuki, Y., and Akimitsu, N. 2012. Genome‐wide determination of RNA stability reveals hundreds of short‐lived noncoding transcripts in mammals. Genome Res. 22:947‐956. doi: 10.1101/gr.130559.111.
  Wunnicke, D., Strohbach, D., Meigand, J.E., Appel, B., Feresin, E., Suess, B., Müller, S., and Steinhoff, H.J. 2011. Ligand‐induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17:182‐188. doi: 10.1261/rna.2222811.
PDF or HTML at Wiley Online Library