Local Generation and Imaging of Hydrogen Peroxide in Living Cells

Yulia A. Bogdanova1, Carsten Schultz2, Vsevolod V. Belousov3

1 Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, 2 Oregon Health & Science University, Portland, 3 Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.20
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Described here is a localized H2O2 generation‐detection system consisting of a yeast D‐amino acid oxidase (DAAO) and two spectrally distinct variants of biosensor, HyPer2 and HyPerRed based on circularly permutated yellow and red fluorescent proteins, respectively, which enables spatiotemporal production and examination of the intracellular H2O2 dynamics. The protocol describes using this system in a simple cell culture model. We provide detailed instructions on imaging of H2O2 generated by the activated DAAO. The system can be easily optimized for various combinations of cell types, conditions and DAAO/sensor subcellular localizations. © 2017 by John Wiley & Sons, Inc.

Keywords: biosensors; D‐amino acid oxidase; hydrogen peroxide; HyPer; HyPer2; HyPerRed; metabolic engineering; reactive oxygen species

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: H2O2 Generation in the Nucleus or Cytoplasm and Real‐Time Imaging at Both Compartments
  • Reagents And Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: H2O2 Generation in the Nucleus or Cytoplasm and Real‐Time Imaging at Both Compartments

  Materials
  • Mammalian cells
  • Appropriate cell culture medium (e.g., complete growth medium; see recipe)
  • Plasmids: HyPer2‐NES (version with nuclear export signal, NES), HyPerRed‐NLS (version with nuclear localization signal, NLS), and one of the DAAO variants: DAAO‐NES or DAAO‐NLS
  • OPTI‐MEM (ThermoFisher Scientific, cat. no. 31985‐047)
  • FuGeneHD transfection reagent (Promega, cat. no. E2311)
  • Tyrode's Salts (Sigma‐Aldrich, cat. no. T2145)
  • HEPES (Promega, cat. no. H5302)
  • Imaging medium (see recipe)
  • H 2O 2 (Sigma–Aldrich, cat. no. 516813)
  • Alanine stock solution (see recipe)
  • Glass‐bottom 35‐mm dishes (MatTek, cat. no. P35G‐1.5‐10‐C)
  • 37°C, 5% CO 2 incubator
  • Wide‐field fluorescent microscope equipped with a thermostatic box
  • Mercury or xenon arc lamp
  • ImageJ or Fiji open software
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Antunes, F., & Cadenas, E. (2000). Estimation of H2O2 gradients across biomembranes. FEBS Letters, 475, 121–126. doi: 10.1016/S0014‐5793(00)01638‐0.
  Asgharian, A., Banan, M., & Najmabadi, H. (2014). Optimizing a lipocomplex‐based gene transfer method into HeLa cell line. Cell Journal, 15, 372–377.
  Bedard, K., & Krause, K.‐H. (2007). The NOX family of ROS‐generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313. doi: 10.1152/physrev.00044.2005.
  Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., & Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods, 3, 281–286. doi: 10.1038/nmeth866.
  Bilan, D. S., Pase, L., Joosen, L., Gorokhovatsky, A. Y., Ermakova, Y. G., Gadella, T. W. J., … Belousov, V. V. (2013). HyPer‐3: A genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chemical Biology, 8, 535–542. doi: 10.1021/cb300625g.
  Chen, K., Kirber, M. T., Xiao, H., Yang, Y., & Keaney, J. F. JR. (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. The Journal of Cell Biology, 181, 1129–1139. doi: 10.1083/jcb.200709049.
  Ermakova, Y. G., Bilan, D. S., Matlashov, M. E., Mishina, N. M., Markvicheva, K. N., Subach, O. M., … Belousov, V. V. (2014). Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications, 5, 5222. doi: 10.1038/ncomms6222.
  Garcia‐Santamarina, S., Boronat, S., & Hidalgo, E. (2014). Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction. Biochemistry, 53, 2560–2580. doi: 10.1021/bi401700f.
  Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65, 45–80. doi: 10.1016/j.jbbm.2005.10.003.
  Huang, Q.‐T., Chen, J.‐H., Hang, L.‐L., Liu, S.‐S., & Zhong, M. (2015). Activation of PAR‐1/NADPH oxidase/ROS signaling pathways is crucial for the thrombin‐induced sFlt‐1 production in extravillous trophoblasts: Possible involvement in the pathogenesis of preeclampsia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 35, 1654–1662. doi: 10.1159/000373979.
  Jacobsen, L. B., Calvin, S. A., Colvin, K. E., & Wright, M. (2004). FuGENE 6 transfection reagent: The gentle power. Methods (San Diego, Calif.), 33, 104–112. doi: 10.1016/j.ymeth.2003.11.002.
  Jordan, M., & Wurm, F. (2004). Transfection of adherent and suspended cells by calcium phosphate. Methods (San Diego, Calif.), 33, 136–143. doi: 10.1016/j.ymeth.2003.11.011.
  Kim, D. J., & Kim, Y. S. (2015). Trimethyltin‐induced microglial activation via NADPH Oxidase and MAPKs Pathway in BV‐2 Microglial Cells. Mediators of Inflammation, 2015, 729509. doi: 10.1155/2015/729509.
  Kishida, K. T., & Klann, E. (2007). Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxidants & Redox Signaling, 9, 233–244. doi: 10.1089/ars.2007.9.ft‐8.
  Leto, T. L., Morand, S., Hurt, D., & Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants & Redox Signaling, 11, 2607–2619. doi: 10.1089/ars.2009.2637.
  Liang, J., Wu, S. Y., Zhang, D., Wang, L., Leung, K. K., & Leung, P. S. (2016). NADPH oxidase‐dependent reactive oxygen species stimulate beta‐cell regeneration through differentiation of endocrine progenitors in murine pancreas. Antioxidants & Redox Signaling, 24, 419–433. doi: 10.1089/ars.2014.6135.
  Markvicheva, K. N., Bilan, D. S., Mishina, N. M., Gorokhovatsky, A. Y., Vinokurov, L. M., Lukyanov, S., & Belousov, V. V. (2011). A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorganic & Medicinal Chemistry, 19, 1079–1084. doi: 10.1016/j.bmc.2010.07.014.
  Matlashov, M. E., Belousov, V. V., & Enikolopov, G. (2014). How much H(2)O(2) is produced by recombinant D‐amino acid oxidase in mammalian cells? Antioxidants & Redox Signaling, 20, 1039–1044. doi: 10.1089/ars.2013.5618.
  Matlashov, M. E., Bogdanova, Y. A., Ermakova, G. V., Mishina, N. M., Ermakova, Y. G., Nikitin, E. S., … Belousov, V. V. (2015). Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochimica et Biophysica Acta, 1850, 2318–2328. doi: 10.1016/j.bbagen.2015.08.002.
  Mishina, N. M., Mishin, A. S., Belyaev, Y., Bogdanova, E. A., Lukyanov, S., Schultz, C., & Belousov, V. V. (2015). Live‐Cell STED microscopy with genetically encoded biosensor. Nano Letters, 15, 2928–2932. doi: 10.1021/nl504710z.
  Mishina, N. M., Tyurin‐Kuzmin, P. A., Markvicheva, K. N., Vorotnikov, A. V., Tkachuk, V. A., Laketa, V., … Belousov, V. V. (2011). Does cellular hydrogen peroxide diffuse or act locally? Antioxidants & Redox Signaling, 14, 1–7. doi: 10.1089/ars.2010.3539.
  Pollegioni, L., Diederichs, K., Molla, G., Umhau, S., Welte, W., Ghisla, S., & Pilone, M. S. (2002). Yeast D‐amino acid oxidase. structural basis of its catalytic properties. Journal of Molecular Biology, 324, 535–546. doi: 10.1016/S0022‐2836(02)01062‐8.
  Pollegioni, L., Langkau, B., Tischer, W., Ghisla, S., & Pilone, M. S. (1993). Kinetic mechanism of D‐amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. The Journal of Biological Chemistry, 268, 13850–13857.
  Rochfort, K. D., Collins, L. E., Murphy, R. P., & Cummins, P. M. (2014). Downregulation of blood‐brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase‐dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PloS One, 9, e101815. doi: 10.1371/journal.pone.0101815.
  Sies, H., Cadenas, E., Symons, M. C. R., & Scott, G. (1985). Oxidative stress. Damage to intact cells and organs [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences, 311, 617–631. doi: 10.1098/rstb.1985.0168.
  Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84. doi: 10.1016/j.biocel.2006.07.001.
  Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4, 278–286. doi: 10.1038/nchembio.85.
  Woolley, J. F., Stanicka, J., & Cotter, T. G. (2013). Recent advances in reactive oxygen species measurement in biological systems. Trends in Biochemical Sciences, 38, 556–565. doi: 10.1016/j.tibs.2013.08.009.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library