Optimized PEI‐based Transfection Method for Transient Transfection and Lentiviral Production

Shaozhe Yang1, Xiaoling Zhou2, Rongxiang Li1, Xiuhong Fu1, Pingnan Sun2

1 Reproductive and Genetic Center, The First Affiliated Hospital of Luohe Medical College, Luohe, 2 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.25
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Polyethyleneimine (PEI), a cationic polymer vehicle, forms a complex with DNA which then can carry anionic nucleic acids into eukaryotic cells. PEI‐based transfection is widely used for transient transfection of plasmid DNA. The efficiency of PEI‐based transfection is affected by numerous factors, including the way the PEI/DNA complex is prepared, the ratio of PEI to DNA, the concentration of DNA, the storage conditions of PEI solutions, and more. Considering the major influencing factors, PEI‐based transfection has been optimized to improve its efficiency, reproducibility, and consistency. This protocol outlines the steps for ordinary transient transfection and lentiviral production using PEI. © 2017 by John Wiley & Sons, Inc.

Keywords: lentivirial production; polyethylenimine; transfection method; transient transfection

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Using PEI to Transiently Transfect Cells in a 12‐Well Plate
  • Basic Protocol 2: Transfecting 293T Cells in 10‐cm Dish to Produce Lentivirus
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Using PEI to Transiently Transfect Cells in a 12‐Well Plate

  • Cell line: 293T cells (ATCC, cat. no. CRL‐11268); alternatively use Huh7 cells or Hep3B cells (also from ATCC)
  • Complete medium (see recipe)
  • Transfection medium (see recipe)
  • Phosphate‐buffered saline (PBS; see recipe)
  • Plasmid (see recipe for preparation): p‐LV‐EGFP
  • PEI solution (see recipe)
  • Radioimmunoprecipitation (RIPA) buffer (see recipe)
  • BCA protein assay kit (Thermo, cat. no. NCI3225CH)
  • 6× SDS‐PAGE sample loading buffer, (Beyotime, cat. no. P0015F)
  • Running buffer for SDS‐PAGE (see recipe)
  • Transfer buffer for immunoblotting (see recipe)
  • Non‐fat milk blocking buffer (see recipe)
  • Anti‐GFP antibody (from goat; Abcam, cat. no. Ab6673)
  • Anti‐β‐actin antibody (from mouse, ZSGB‐Bio, cat. no. ZM‐0001)
  • Antibody dilution buffer (see recipe)
  • 12‐well culture plate
  • Light microscope and fluorescence microscope
  • Safe‐Lock 1.5‐ml microcentrifuge tubes (Eppendorf)
  • Rocker
  • Refrigerated microcentrifuge
  • Nitrocellulose membrane for immunoblotting (Millipore, cat. no. HAHY00010)
  • 100°C water bath
  • Additional reagents and equipment for cell culture (Phelan & May, ), SDS‐PAGE (Gallagher, ), and transfer of proteins to nitrocellulose membrane by immunoblotting (western blotting; (Ni, Xu, & Gallagher, )

Basic Protocol 2: Transfecting 293T Cells in 10‐cm Dish to Produce Lentivirus

  • 293T cells (ATCC, cat. no. CRL‐11268)
  • Complete medium (see recipe)
  • Transfection medium (see recipe)
  • Plasmids (see recipe for preparation):
    • p‐LV‐EGFP
    • pRSV‐REV
    • pMDLg/pRRE (gag/pol elements)
    • VSVL
  • PEI solution (see recipe)
  • Phosphate‐buffered saline (PBS; see recipe)
  • PEG6000 (Sigma, cat. no. 81253)
  • Polybrene (Sigma, cat. no. H9268)
  • 1× 0.25% trypsin (Gibco, cat. no. 15050‐057)
  • 10‐cm dish
  • Light microscope and fluorescence microscope
  • 50‐ml conical centrifuge tubes (e.g., Corning Falcon)
  • Refrigerated centrifuge
  • 0.45‐µm PES membrane (ThermoFisher; cat. no. 124‐0045)
  • 12‐well culture plate
  • 5‐ml round‐bottom tubes (e.g., Corning Falcon)
  • 70‐µm cell strainer
  • Fluorescence‐activated cell sorting (FACS) instrument (Robinson et al., 2017)
  • Additional reagents and equipment for cell culture including counting cells with a hemacytometer (Phelan & May, ) and fluorescence‐activated cell sorting FACS; Robinson et al., 2017)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Ahn, H. H., Lee, J. H., Kim, K. S., Lee, J. Y., Kim, M. S., Khang, G., … Lee, H. B. (2008). Polyethyleneimine‐mediated gene delivery into human adipose derived stem cells. Biomaterials, 29, 2415–2422. doi: 10.1016/j.biomaterials.2008.02.006.
  Aslan, H., Zilberman, Y., Arbeli, V., Sheyn, D., Matan, Y., Liebergall, M., … Gazit, Z. (2006). Nucleofection‐based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Engineering, 12, 877–889. doi: 10.1089/ten.2006.12.877.
  Azzam, T., & Domb, A. J. (2004). Current developments in gene transfection agents. Current Drug Delivery, 1, 165–193. doi: 10.2174/1567201043479902.
  Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J. P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 92, 7297–7301. doi: 10.1073/pnas.92.16.7297.
  Brokx, R., & Gariepy, J. (2004). Peptide‐ and polymer‐based gene delivery vehicles. Methods in Molecular Medicine, 90, 139–160.
  Coleman, J. E., Huentelman, M. J., Kasparov, S., Metcalfe, B. L., Paton, J. F. R., Katovich, M. J., … Raizada, M. K. (2003). Efficient large‐scale production and concentration of HIV‐1‐based lentiviral vectors for use in vivo. Physiological Genomics, 12, 221–228. doi: 10.1152/physiolgenomics.00135.2002.
  Cronin, J., Zhang, X. Y., & Reiser, J. (2005). Altering the tropism of lentiviral vectors through pseudotyping . Current Gene Therapy, 5, 531–531. doi: 10.2174/1566523054546224.
  Gallagher, S. R. (2007). One‐dimensional SDS gel electrophoresis of proteins. Current Protocols in Cell Biology, 37, 6.1.1–6.1.38. doi: 10.1002/0471143030.cb0601s37.
  Gersbach, C. A., Coyer, S. R., Doux, J. M. L., & García, A. J. (2008). Biomaterial‐mediated retroviral gene transfer using self‐assembled monolayers. Biomaterials, 28, 5121–5127. doi: 10.1016/j.biomaterials.2007.07.047.
  Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Poly(ethylenimine) and its role in gene delivery. Journal of Controlled Release, 60, 149–160. doi: 10.1016/S0168‐3659(99)00090‐5.
  Haider, M., Hatefi, A., & Ghandehari, H. (2005). Recombinant polymers for cancer gene therapy: A minireview. Journal of Controlled Release, 109, 108–119. doi: 10.1016/j.jconrel.2005.09.018.
  Kosaka, Y., Kobayashi, N., Fukazawa, T., Totsugawa, T., Maruyama, M., Yong, C., … Tanaka, N. (2004). Lentivirus‐based gene delivery in mouse embryonic stem cells. Artificial Organs, 28, 271–277. doi: 10.1111/j.1525‐1594.2004.47297.x.
  Kutner, R. H., Zhang, X. Y., & Reiser, J. (2009). Production, concentration and titration of pseudotyped HIV‐1‐based lentiviral vectors. Nature Protocols, 4, 495–505. doi: 10.1038/nprot.2009.22.
  Laporte, L. D., Rea, J. C., & Shea, L. D. (2006). Design of modular non‐viral gene therapy vectors. Biomaterials, 27, 947–954. doi: 10.1016/j.biomaterials.2005.09.036.
  Lavertu, M., Méthot, S., Tran‐Khanh, N., & Buschmann, M. D. (2006). High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 27, 4815–4824. doi: 10.1016/j.biomaterials.2006.04.029.
  Ni, D., Xu, P., & Gallagher, S. (2017). Immunoblotting and immunodetection. Current Protocols in Cell Biology, 74, 6.2.1‐6.2.37. doi: 10.1002/cpcb.18.
  Phelan, K., & May, K. M. (2015). Basic techniques in mammalian cell tissue culture. Current Protocols in Cell Biology, 66, 1.1.1‐1.1.22. doi: 10.1002/0471143030.cb0101s66.
  Robinson, J. P., Darzynkiewicz, Z., Hyun, W., Orfao, A., Rabinovitch, P. S., Dean, P. N., … Wheeless, L. L. (2005). Current Protocols in Cytometry, Hoboken, NJ: John Wiley & Sons.
  Segura, M. M., Garnier, A., Durocher, Y., Ansorge, S., & Kamen, A. (2010). New protocol for lentiviral vector mass production. Methods in Molecular Biology (Clifton, N.J.), 614, 39–52. doi: 10.1007/978‐1‐60761‐533‐0_2.
  Selvam, S., Thomas, P. B., Hammalvarez, S. F., Schechter, J. E., Stevenson, D., Mircheff, A. K., & Trousdale, M. D. (2006). Current status of gene delivery and gene therapy in lacrimal gland using viral vectors. Advanced Drug Delivery Reviews, 58, 1243–1257. doi: 10.1016/j.addr.2006.07.021.
  Shin, K. J., Wall, E. A., Zavzavadjian, J. R., Santat, L. A., Liu, J., Hwang, J. I., … Fraser, I. D. C. (2006). A single lentiviral vector platform for microRNA‐based conditional RNA interference and coordinated transgene expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 13759–13764. doi: 10.1073/pnas.0606179103.
  Sun, J. Y., Anandjawa, V., Chatterjee, S., & Wong, K. K. (2003). Immune responses to adeno‐associated virus and its recombinant vectors. Gene Therapy, 10, 964–976. doi: 10.1038/sj.gt.3302039.
  Thomas, M., & Klibanov, A. M. (2002). Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 14640–14645. doi: 10.1073/pnas.192581499.
  Toledo, J. R., Prieto, Y., Oramas, N., & Sanchez, O. (2009). Polyethylenimine‐based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Applied Biochemistry and Biotechnology, 157, 538–544. doi: 10.1007/s12010‐008‐8381‐2.
  Usas, A., & Huard, J. (2007). Muscle‐derived stem cells for tissue engineering and regenerative therapy. Biomaterials, 28, 5401–5406. doi: 10.1016/j.biomaterials.2007.09.008.
  Yang, S., Shi, H., Chu, X., Zhou, X., & Sun, P. (2016). A rapid and efficient polyethylenimine‐based transfection method to prepare lentiviral or retroviral vectors: Useful for making iPS cells and transduction of primary cells. Biotechnology Letters, 38, 1631–1641. doi: 10.1007/s10529‐016‐2123‐2.
  Zaiss, A. K., & Muruve, D. A. (2005). Immune responses to adeno‐associated virus vectors. Current Gene Therapy, 5, 323–331. doi: 10.2174/1566523054065039.
  Zeng, J., Wang, X., & Wang, S. (2007). Self‐assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials, 28, 1443–1451. doi: 10.1016/j.biomaterials.2006.11.015.
PDF or HTML at Wiley Online Library