Characterizing the Nano‐Bio Interface Using Microscopic Techniques: Imaging the Cell System is Just as Important as Imaging the Nanoparticle System

Christie M. Sayes1, Henry Lujan1

1 Department of Environmental Science, Baylor University, Waco, Texas
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.26
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The rapid growth of nanotechnology and its industries has elevated the need to understand the risks associated with handling, using, and disposing of nanomaterials. These risks can be assessed through exposure measurement and hazard identification. One of the common challenges associated with quantifying nanomaterials in products, waste, humans, or the environment is the lack of tools available to measure concentration. The ability of refined tools and techniques to qualitatively detect nanoparticles in complex matrices has been demonstrated. For biological and ecological tests systems, dose can be represented as initial concentration in the applied matrix, concentration administered during the route of exposure, concentration at the target organ, and intake concentration at the cellular level. Each of these concentration measurements requires different sets of tools to perform accurate analyses. Advances in microscopy techniques provide new opportunities for reporting observations occurring at the interaction of a nanoparticle with a biomolecular entity of similar size within a biological test(s) system. This protocol outlines the steps to image nanomaterials within cell‐based systems. © 2017 by John Wiley & Sons, Inc.

Keywords: nano‐bio interface; electron microscopy; fluorescence microscopy; atomic force microcopy

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Characterizing the Nano‐Bio Interface via Fluorescence Microscopy
  • Basic Protocol 2: Characterizing the Nano‐Bio Interface via Transmission Electron Microscopy
  • Basic Protocol 3: Characterizing the Nano‐Bio Interface via Atomic Force Microscopy
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Characterizing the Nano‐Bio Interface via Fluorescence Microscopy

  Materials
  • Cells of interest
  • Cell culture medium
  • Medium growth supplements
  • Phenol red‐free cell culture medium
  • Fluorescent dyes (i.e., nucleus, mitochondria, membrane, or other stains to highlight cell structures of interest)
  • Nanoparticles (i.e., carbonaceous, zerovalent metals, metal oxides, polymeric)
  • Anti‐fade reagent (e.g., SlowFade)
  • Microscope slides (1 × 3–mm plain glass slide)
  • Cover slips (0.17 mm thickness)
  • Immersion oil
  • Optical lens cleaner or wipes for cleaning lens
  • Biological safety cabinet (or laminar flow hood)
  • Cell/tissue incubator maintained at 37°C and 5% CO 2
  • Fluorescence microscope with a 10× objective (for low magnification) and 40×, 60×, or 100× objective (for increasingly higher magnifications)
  • Filter cubes matched to fluorescent dyes being used; examples include 4′,6‐diamidino‐2‐phenylindole, dihydrochloride (DAPI)‐stained nuclei with a WU near‐ultraviolet fluorescence cube and antibody labeling with fluorescein isothiocyanate (FITC) using the WIB green long‐pass fluorescence cube
  • Camera
  • Light source (fluorescence microscopy requires monochromatic illumination; three main types of light sources include lamp, i.e., xenon arc or mercury‐vapor; laser; and diode, i.e., light‐emitting)

Basic Protocol 2: Characterizing the Nano‐Bio Interface via Transmission Electron Microscopy

  Materials
  • Cells of interest
  • Cell culture medium
  • Medium growth supplements
  • Ultrapure water
  • Phosphate‐buffered saline (PBS)
  • Glutaraldehyde
  • Epoxy reagents (resin, adhesive, curing agent, and accelerant)
  • Stains (osmium tetroxide, uranyl acetate, and lead citrate)
  • Nanoparticles (i.e., carbonaceous, zerovalent metals, metal oxides, polymeric)
  • Biological safety cabinet (or laminar flow hood)
  • Cell/tissue incubator maintained at 37°C and 5% CO 2
  • Grids (for example, Ted Pella, https://www.tedpella.com, produces TEM mesh grids in different pitch length, hole width, and bar width; grids can be made out of copper, nickel, or gold)
  • Ultramicrotome
  • Transmission electron microscope (TEM)
  • Energy dispersive X‐ray spectrometer

Basic Protocol 3: Characterizing the Nano‐Bio Interface via Atomic Force Microscopy

  Materials
  • Cells of interest
  • Cell culture medium
  • Medium growth supplements
  • Phosphate‐buffered saline (PBS)
  • Ultrapure water
  • Nanoparticles (i.e., carbonaceous, zerovalent metals, metal oxides, polymeric)
  • Biological safety cabinet (or laminar flow hood)
  • Coverslips
  • Cell/tissue incubator maintained at 37°C and 5% CO 2
  • Atomic force microscope (AFM) with liquid (or fluid) cell
  • Sharp tip (or probe; typically made of silicon or silicon nitride, or with a radius of curvature on the order of nanometers; images can be enhanced depending on the tip's material, size, and mode used while imaging)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aillon, K. L., Xie, Y., El‐Gendy, N., Berkland, C. J., & Forrest, M. L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 61, 457–466. doi: 10.1016/j.addr.2009.03.010.
  Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., … Schmieder, P. K. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 29, 730–741. doi: 10.1002/etc.34.
  Astete, C. E., & Sabliov, C. M. (2006). Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science, Polymer Edition, 17, 247–289. doi: 10.1163/156856206775997322.
  Axelrod, D. (2008). Total internal reflection fluorescence microscopy. Methods in Cell Biology, 89, 169–221. doi: 10.1016/S0091‐679X(08)00607‐9.
  Bellare, J. R., Davis, H., Scriven, L., & Talmon, Y. (1988). Controlled environment vitrification system: An improved sample preparation technique. Journal of Electron Microscopy Technique, 10, 87–111. doi: 10.1002/jemt.1060100111.
  Berg, J. M., Ho, S., Hwang, W., Zebda, R., Cummins, K., Soriaga, M. P., … Sayes, C. M. (2010). Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Chemical Research in Toxicology, 23, 1874–1882. doi: 10.1021/tx100307h.
  Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. M. (2009). The relationship between pH and zeta potential of ∼30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 3, 276–283. doi: 10.3109/17435390903276941.
  Berg, J. M., Romoser, A. A., Figueroa, D. E., West, C. S., & Sayes, C. M. (2013). Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2. Toxicology in Vitro, 27, 24–33. doi: 10.1016/j.tiv.2012.09.002.
  Bozzola, J. J., & Russell, L. D. (1999). Electron microscopy: Principles and techniques for biologists. Sudbury, MA: Jones & Bartlett Learning.
  Brenner, C., Tam, A., Nelson, P., Engleman, E., Suzuki, N., Fry, K., & Larrick, J. (1988). Message amplification phenotyping (MAPPing): A technique to simultaneously measure multiple mRNAs from small numbers of cells. BioTechniques, 7, 1096–1103.
  Chen, C., Liu, P., & Lu, C. (2008). Synthesis and characterization of nano‐sized ZnO powders by direct precipitation method. Chemical Engineering Journal, 144, 509–513. doi: 10.1016/j.cej.2008.07.047.
  Cho, E. J., Holback, H., Liu, K. C., Abouelmagd, S. A., Park, J., & Yeo, Y. (2013). Nanoparticle characterization: State of the art, challenges, and emerging technologies. Molecular Pharmaceutics, 10, 2093–2110. doi: 10.1021/mp300697h.
  Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21, 1166–1170. doi: 10.1038/nbt875.
  Dellinger, A., Zhou, Z., Connor, J., Madhankumar, A., Pamujula, S., Sayes, C. M., & Kepley, C. L. (2013). Application of fullerenes in nanomedicine: An update. Nanomedicine, 8, 1191–1208. doi: 10.2217/nnm.13.99.
  Donaldson, K., Murphy, F., Schinwald, A., Duffin, R., & Poland, C. A. (2011). Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety‐by‐design. Nanomedicine, 6, 143–156. doi: 10.2217/nnm.10.139.
  Duell, B. L., Cripps, A. W., Schembri, M. A., & Ulett, G. C. (2011). Epithelial cell coculture models for studying infectious diseases: Benefits and limitations. Journal of Biomedicine and Biotechnology, 2011. doi: 10.1155/2011/852419.
  Edgington, A. J., Petersen, E. J., Herzing, A. A., Podila, R., Rao, A., & Klaine, S. J. (2014). Microscopic investigation of single‐wall carbon nanotube uptake by Daphnia magna. Nanotoxicology, 8(Suppl 1), 2–10. doi: 10.3109/17435390.2013.847504.
  Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37, 112–119. doi: 10.1016/j.clinbiochem.2003.10.014.
  Fantner, G. E., Barbero, R. J., Gray, D. S., & Belcher, A. M. (2010). Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high‐speed atomic force microscopy. Nature Nanotechnology, 5, 280–285. doi: 10.1038/nnano.2010.29.
  Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73, 627–650.
  Geraci, C., Heidel, D., Sayes, C., Hodson, L., Schulte, P., Eastlake, A., & Brenner, S. (2015). Perspectives on the design of safer nanomaterials and manufacturing processes. Journal of Nanoparticle Research, 17, 366. doi: 10.1007/s11051‐015‐3152‐9.
  Hage, E. (1979). Light and electron microscopic characteristics of the various lung endocrine cell types. Investigative & Cell Pathology, 3, 345–351.
  Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano‐drug delivery systems‐a review (Part 1). Tropical Journal of Pharmaceutical Research, 12, 255–264.
  Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y. F., Ohta, T., … Yamamoto, K. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 4, 2163–2169. doi: 10.1021/nl048715d.
  Huang, C., & Hu, B. (2008). Silica‐coated magnetic nanoparticles modified with γ‐mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 437–444. doi: https://doi.org/10.1016/j.sab.2007.12.010.
  Jung, T., Schauer, U., Heusser, C., Neumann, C., & Rieger, C. (1993). Detection of intracellular cytokines by flow cytometry. Journal of Immunological Methods, 159, 197–207. doi: https://doi.org/10.1016/0022‐1759(93)90158‐4.
  Klaassen, C. D., & Amdur, M. O. (1996). Casarett and Doull's toxicology: The basic science of poisons. New York: McGraw‐Hill.
  Kolosnjaj‐Tabi, J., Javed, Y., Lartigue, L., Volatron, J., Elgrabli, D., Marangon, I., … Gazeau, F. (2015). The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano, 9, 7925–7939. doi: 10.1021/acsnano.5b00042.
  Kubitscheck, U. (2013). Fluorescence microscopy: From principles to biological applications. Hoboken, NJ: John Wiley & Sons.
  Lao, F., Li, W., Han, D., Qu, Y., Liu, Y., Zhao, Y., & Chen, C. (2009). Fullerene derivatives protect endothelial cells against NO‐induced damage. Nanotechnology, 20, 225103. doi: 10.1088/0957‐4484/20/22/225103.
  Laurent, S., Burtea, C., Thirifays, C., Häfeli, U. O., & Mahmoudi, M. (2012). Crucial ignored parameters on nanotoxicology: The importance of toxicity assay modifications and “cell vision”. PLoS One, 7, e29997. doi: 10.1371/journal.pone.0029997.
  Lehenkari, P., Charras, G., Nykänen, A., & Horton, M. (2000). Adapting atomic force microscopy for cell biology. Ultramicroscopy, 82, 289–295. doi: 10.1016/S0304‐3991(99)00138‐2.
  Lemine, O. (2009). Microstructural characterisation of nanoparticles using, XRD line profiles analysis, FE‐SEM and FT‐IR. Superlattices and Microstructures, 45, 576–582. doi: 10.1016/j.spmi.2009.02.004.
  Lovern, S. B., Owen, H. A., & Klaper, R. (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2, 43–48. doi: 10.1080/17435390801935960.
  Ma, M., Zhang, Y., Yu, W., Shen, H.‐Y., Zhang, H.‐Q., & Gu, N. (2003). Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 212, 219–226. doi: 10.1016/S0927‐7757(02)00305‐9.
  Mahaffy, R., Shih, C., MacKintosh, F., & Käs, J. (2000). Scanning probe‐based frequency‐dependent microrheology of polymer gels and biological cells. Physical Review Letters, 85, 880. doi: 10.1103/PhysRevLett.85.880.
  Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15, 1101–1111. doi: 10.1091/mbc.E03‐09‐0704.
  Mondal, P. P., & Diaspro, A. (2013). Fundamentals of fluorescence microscopy: Exploring life with light. New York: Springer Science + Business Media.
  Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. doi: 10.1016/0022‐1759(83)90303‐4.
  Mosmann, T., & Fong, T. (1989). Specific assays for cytokine production by T cells. Journal of Immunological Methods, 116, 151–158. doi: 10.1016/0022‐1759(89)90198‐1.
  Murdock, R. C., Braydich‐Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101, 239–253. doi: 10.1093/toxsci/kfm240.
  Mycek, M.‐A., & Pogue, B. W. (2003). Handbook of biomedical fluorescence. New York: CRC Press.
  Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627. doi: 10.1126/science.1114397.
  Neuman, K. C., & Nagy, A. (2008). Single‐molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491. doi: 10.1038/nmeth.1218.
  Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., & Geim, A. (2005). Two‐dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453. doi: 10.1073/pnas.0502848102.
  Nuffer, L. L., Medvick, P. A., Foote, H. P., & Solinsky, J. C. (2006). Multispectral/hyperspectral image enhancement for biological cell analysis. Cytometry Part A, 69, 897–903. doi: 10.1002/cyto.a.20294.
  Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839. doi: 10.1289/ehp.7339.
  Pan, Y., Wu, Q., Qin, L., Cai, J., & Du, B. (2014). Gold nanoparticles inhibit VEGF165‐induced migration and tube formation of endothelial cells via the Akt pathway. Biomed Research International, 2014, 418624. doi: 10.1155/2014/418624.
  Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences, 90, 296–303. doi: 10.1093/toxsci/kfj099.
  Pradeep, A., Priyadharsini, P., & Chandrasekaran, G. (2008). Sol‐gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. Journal of Magnetism and Magnetic Materials, 320, 2774–2779. doi: 10.1016/j.jmmm.2008.06.012.
  Rao, C. N. R., Müller, A., & Cheetham, A. K. (2006). The chemistry of nanomaterials: Synthesis, properties and applications. Hoboken, NJ: John Wiley & Sons.
  Romoser, A., Ritter, D., Majitha, R., Meissner, K. E., McShane, M., & Sayes, C. M. (2011). Mitigation of quantum dot cytotoxicity by microencapsulation. PLoS One, 6, e22079. doi: 10.1371/journal.pone.0022079.
  Sawant, S., Verenkar, V., & Mojumdar, S. (2007). Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. Journal of Thermal Analysis and Calorimetry, 90, 669–672. doi: 10.1007/s10973‐007‐8520‐y.
  Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., … Billups, W. E. (2006a). Functionalization density dependence of single‐walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 161, 135–142. doi: 10.1016/j.toxlet.2005.08.011.
  Sayes, C. M., Wahi, R., Kurian, P. A., Liu, Y., West, J. L., Ausman, K. D., … Colvin, V. L. (2006b). Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicological Sciences, 92, 174–185. doi: 10.1093/toxsci/kfj197.
  Sayes, C. M., & Warheit, D. B. (2009). Characterization of nanomaterials for toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 660–670. doi: 10.1002/wnan.58.
  Schultz, R. A., Nielsen, T., Zavaleta, J. R., Ruch, R., Wyatt, R., & Garner, H. R. (2001). Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry, 43, 239–247. doi: 10.1002/1097‐0320(20010401)43:4<239::AID‐CYTO1056>3.0.CO;2‐Z.
  Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic‐phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
  Sitharaman, B. (2016). Nanobiomaterials handbook. New York: CRC Press.
  Slayter, E. M., & Slayter, H. S. (1992). Light and electron microscopy. New York: Cambridge University Press.
  Spurr, A. R. (1969). A low‐viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31–43. doi: 10.1016/S0022‐5320(69)90033‐1.
  Studer, D., Humbel, B. M., & Chiquet, M. (2008). Electron microscopy of high pressure frozen samples: Bridging the gap between cellular ultrastructure and atomic resolution. Histochemistry and Cell Biology, 130, 877–889. doi: 10.1007/s00418‐008‐0500‐1.
  Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D., & Pounds, J. G. (2007). Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences, 95, 300–312. doi: 10.1093/toxsci/kfl165.
  Ulman, A. (2013). An introduction to ultrathin organic films: From langmuir‐blodgett to self‐assembly. Cambridge, MA: Academic Press.
  Uvarov, V., & Popov, I. (2007). Metrological characterization of X‐ray diffraction methods for determination of crystallite size in nano‐scale materials. Materials Characterization, 58, 883–891. doi: 10.1016/j.matchar.2006.09.002.
  Vinckier, A., & Semenza, G. (1998). Measuring elasticity of biological materials by atomic force microscopy. FEBS Letters, 430, 12–16. doi: 10.1016/S0014‐5793(98)00592‐4.
  Warheit, D. B. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicological Sciences, 101, 183–185. doi: 10.1093/toxsci/kfm279.
  Warheit, D. B., Hoke, R. A., Finlay, C., Donner, E. M., Reed, K. L., & Sayes, C. M. (2007a). Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 171, 99–110. doi: 10.1016/j.toxlet.2007.04.008.
  Warheit, D. B., Webb, T. R., Reed, K. L., Frerichs, S., & Sayes, C. M. (2007b). Pulmonary toxicity study in rats with three forms of ultrafine‐TiO2 particles: Differential responses related to surface properties. Toxicology, 230, 90–104. doi: 10.1016/j.tox.2006.11.002.
  Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell‐specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423. doi: 10.1038/nbt1159.
  Williams, D. B., & Carter, C. B. (1996). The transmission electron microscope. In Transmission electron microscopy: A textbook for materials science (pp. 3–17). New York: Springer.
  Wolburg, H., Neuhaus, J., Kniesel, U., Krauß, B., Schmid, E.‐M., Ocalan, M., … Risau, W. (1994). Modulation of tight junction structure in blood‐brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science, 107, 1347–1357.
  Zhang, C., Zhang, Z., Yu, B., Shi, J., & Zhang, X. (2002). Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Analytical Chemistry, 74, 96–99. doi: 10.1021/ac0103468.
  Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561. doi: 10.1016/S0142‐9612(01)00267‐8.
  Zhang, Y., Yang, M., Ozkan, M., & Ozkan, C. S. (2009). Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake. Biotechnology Progress, 25, 923–928. doi: 10.1002/btpr.215.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library