Overview of Methods and Strategies for Conducting Virtual Small Molecule Screening

Xavier Fradera1, Kerim Babaoglu1

1 Modeling and Informatics, MRL, Merck & Co., Inc., West Point
Publication Name:  Current Protocols in Chemical Biology
Unit Number:   
DOI:  10.1002/cpch.27
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Virtual screening (VS) in the context of drug discovery is the use of computational methods to discover novel ligands with a desired biological activity from within a larger collection of molecules. These techniques have been in use for many years, there is a wide range of methodologies available, and many successful applications have been reported in the literature. VS is often used as an alternative or a complement to High‐throughput screening (HTS) or other methods to identify ligands for target validation or medicinal chemistry projects. This unit does not present an exhaustive review of available methods, or document specific instructions on use of individual software packages. Rather, a general overview of the methods available are presented and general strategies are described for VS based on accepted practices and the authors’ experience as computational chemists in an industrial research laboratory. First, the most common methods available for VS are reviewed, categorized as either receptor‐ or ligand‐based. Subsequently, strategic considerations are presented for choosing a VS method, or a combination of methods, as well as the necessary steps to prepare, run, and analyze a VS campaign. © 2017 by John Wiley & Sons, Inc.

Keywords: virtual screening; molecular docking; pharmacophore searches; ligand‐based screening

PDF or HTML at Wiley Online Library

Table of Contents

  • Receptor‐Based Methods
  • Ligand‐Based Methods
  • Strategies & Considerations
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Bajorath, J. (2014). Activity artifacts in drug discovery and different facets of compound promiscuity. F1000Research, 3, 233. doi: 10.12688/f1000research.5426.1.
  Bender, A., Mussa, H. Y., Glen, R. C., & Reiling, S. (2004). Molecular similarity searching using atom environments, information‐based feature selection, and a Naïve Bayesian classifier. Journal of Chemical Information and Computer Sciences, 44(1), 170–178. doi: 10.1021/ci034207y.
  Braga, R. C., Alves, V. M., Silva, A. C., Nascimento, M. N., Silva, F. C., Liao, L. M., & Andrade, C. H. (2014). Virtual screening strategies in medicinal chemistry: The state of the art and current challenges. Current Topics in Medicinal Chemistry, 14(16), 1899–1912. doi: 10.2174/1568026614666140929120749.
  Carlson, H. A., Smith, R. D., Damm‐Ganamet, K. L., Stuckey, J. A., Ahmed, A., Convery, M. A., … Dunbar, J. B., Jr. (2016). CSAR 2014: A benchmark exercise using unpublished data from pharma. Journal of Chemical Information and Modeling, 56(6), 1063–1077. doi: 10.1021/acs.jcim.5b00523.
  Carlsson, J., Coleman, R. G., Setola, V., Irwin, J. J., Fan, H., Schlessinger, A., … Shoichet, B. K. (2011). Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nature Chemical Biology, 7(11), 769–778. doi: 10.1038/nchembio.662.
  Cereto‐Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia‐Vallvé, S., & Pujadas, G. (2015). Molecular fingerprint similarity search in virtual screening. Methods (San Diego, Calif.), 71, 58–63. doi: https://doi.org/10.1016/j.ymeth.2014.08.005.
  Damm‐Ganamet, K. L., Smith, R. D., Dunbar, J. B., Jr., Stuckey, J. A., & Carlson, H. A. (2013). CSAR benchmark exercise 2011‐2012: Evaluation of results from docking and relative ranking of blinded congeneric series. Journal of Chemical Information and Modeling, 53(8), 1853–1870. doi: 10.1021/ci400025f.
  Deller, M. C., & Rupp, B. (2015). Models of protein‐ligand crystal structures: Trust, but verify. Journal of Computer‐Aided Molecular Design, 29(9), 817–836. doi: 10.1007/s10822‐015‐9833‐8.
  Empereur‐Mot, C., Zagury, J. F., & Montes, M. (2016). Screening Explorer ‐ An interactive tool for the analysis of screening results. Journal of Chemical Information and Modeling, 56(12), 2281–2286. doi: 10.1021/acs.jcim.6b00283.
  Friedman, R., & Caflisch, A. (2009). Discovery of plasmepsin inhibitors by fragment‐based docking and consensus scoring. Chemmedchem, 4(8), 1317–1326. doi: 10.1002/cmdc.200900078.
  Gathiaka, S., Liu, S., Chiu, M., Yang, H., Stuckey, J. A., Kang, Y. N., … Gilson, M. K. (2016). D3R grand challenge 2015: Evaluation of protein‐ligand pose and affinity predictions. Journal of Computer‐Aided Molecular Design, 30(9), 651–668. doi: 10.1007/s10822‐016‐9946‐8.
  Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. doi: 10.1517/17460441.2015.1032936.
  Hawkins, P. C., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. Journal of Chemical Information and Modeling, 50(4), 572–584. doi: 10.1021/ci100031×
  Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444–460. doi: 10.1021/ci800293n.
  Hu, Y., & Bajorath, J. (2012). Extending the activity cliff concept: Structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database. Journal of Chemical Information and Modeling, 52(7), 1806–1811. doi: 10.1021/ci300274c.
  Irwin, J. J., & Shoichet, B. K. (2016). Docking screens for novel ligands conferring new biology. Journal of Medicinal Chemistry, 59(9), 4103–4120. doi: 10.1021/acs.jmedchem.5b02008.
  Kim, K.‐H., Kim, N. D., & Seong, B.‐L. (2010). Pharmacophore‐based virtual screening: A review of recent applications. Expert Opinion on Drug Discovery, 5(3), 205–222. doi: 10.1517/17460441003592072.
  Kruger, D. M., & Evers, A. (2010). Comparison of structure‐ and ligand‐based virtual screening protocols considering hit list complementarity and enrichment factors. Chemmedchem, 5(1), 148–158. doi: 10.1002/cmdc.200900314.
  Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20(23), 2839–2860. doi: 10.2174/09298673113209990001.
  Liang, S., Meroueh, S. O., Wang, G., Qiu, C., & Zhou, Y. (2009). Consensus scoring for enriching near‐native structures from protein‐protein docking decoys. Proteins, 75(2), 397–403. doi: 10.1002/prot.22252.
  Lionta, E., Spyrou, G., Vassilatis, D. K., & Cournia, Z. (2014). Structure‐based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. doi: 10.2174/1568026614666140929124445.
  Maggiora, G., Vogt, M., Stumpfe, D., & Bajorath, J. (2014). Molecular similarity in medicinal chemistry. Journal of Medicinal Chemistry, 57(8), 3186–3204. doi: 10.1021/jm401411z.
  McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas, C., Lindsley, S., … Cornell, W. D. (2007). Comparison of topological, shape, and docking methods in virtual screening. Journal of Chemical Information and Modeling, 47(4), 1504–1519. doi: 10.1021/ci700052×
  McGovern, S. L., & Shoichet, B. K. (2003). Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. Journal of Medicinal Chemistry, 46(14), 2895–2907. doi: 10.1021/jm0300330.
  Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD‐E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. doi: 10.1021/jm300687e.
  Novoa, E. M., Ribas de Pouplana, L., Barril, X., & Orozco, M. (2010). Ensemble docking from homology models. Journal of Chemical Theory and Computation, 6(8), 2547–2557. doi: 10.1021/ct100246y.
  Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer‐Aided Molecular Design, 27(3), 221–234. doi: 10.1007/s10822‐013‐9644‐8.
  Sheridan, R. P., & Kearsley, S. K. (2002). Why do we need so many chemical similarity search methods? Drug Discovery Today, 7(17), 903–911. https://doi.org/10.1016/S1359‐6446(02)02411‐X.
  Tawa, G. J., Baber, J. C., & Humblet, C. (2009). Computation of 3D queries for ROCS based virtual screens. Journal of Computer‐Aided Molecular Design, 23(12), 853–868. doi: 10.1007/s10822‐009‐9302‐3.
  Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T., Murray, C. W., Taylor, R. D., & Watson, P. (2004). Virtual screening using protein‐ligand docking: Avoiding artificial enrichment. Journal of Chemical Information and Computer Sciences, 44(3), 793–806. doi: 10.1021/ci034289q.
  Wang, L., Chen, L., Liu, Z., Zheng, M., Gu, Q., & Xu, J. (2014). Predicting mTOR inhibitors with a classifier using recursive partitioning and naïve Bayesian approaches. PLoS One, 9(5), e95221. doi: 10.1371/journal.pone.0095221.
  Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., … Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry, 49(20), 5912–5931. doi: 10.1021/jm050362n.
  Willett, P. (2006). Similarity‐based virtual screening using 2D fingerprints. Drug Discovery Today, 11(23‐24), 1046–1053. doi: 10.1016/j.drudis.2006.10.005.
  Zhu, T., Cao, S., Su, P. C., Patel, R., Shah, D., Chokshi, H. B., … Hevener, K. E. (2013). Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature analysis. Journal of Medicinal Chemistry, 56(17), 6560–6572. doi: 10.1021/jm301916b.
PDF or HTML at Wiley Online Library