Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360

Dara L. Dickstein1, Daniel R. Dickstein2, William G. M. Janssen2, Patrick R. Hof1, Jacob R. Glaser3, Alfredo Rodriguez3, Nate O'Connor3, Paul Angstman3, Susan J. Tappan3

1 Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, New York, 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 3 MBF Bioscience, Williston, Vermont
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 1.27
DOI:  10.1002/cpns.16
Online Posting Date:  October, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Determining the density and morphology of dendritic spines is of high biological significance given the role of spines in synaptic plasticity and in neurodegenerative and neuropsychiatric disorders. Precise quantification of spines in three dimensions (3D) is essential for understanding the structural determinants of normal and pathological neuronal function. However, this quantification has been restricted to time‐ and labor‐intensive methods such as electron microscopy and manual counting, which have limited throughput and are impractical for studies of large samples. While there have been some automated software packages that quantify spine number, they are limited in terms of their characterization of spine structure. This unit presents methods for objective dendritic spine morphometric analysis by providing image acquisition parameters needed to ensure optimal data series for proper spine detection, characterization, and quantification with Neurolucida 360. These protocols will be a valuable reference for scientists working towards quantifying and characterizing spines. © 2016 by John Wiley & Sons, Inc.

Keywords: dendritic spines; neurons; confocal microscopy; automated quantification

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Imaging of Fluorescently Labeled Dendritic Segments
  • Support Protocol 1: Post‐Processing Deconvolution
  • Basic Protocol 2: Dendritic Spine Modeling and Reconstruction with Neurolucida 360
  • Alternate Protocol 1: Spine Classification
  • Basic Protocol 3: Imaging Complete Neurons
  • Basic Protocol 4: Neuron Reconstruction Using Neurolucida 360
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Imaging of Fluorescently Labeled Dendritic Segments

  Materials
  • Fluorescently labeled tissue, mounted onto subbed glass slides and coverslipped using anti‐fade fluorescence mounting media
  • Immersion media appropriate for the specifications of the system
  • Confocal microscope equipped with low and high NA objective lenses
  • Image capture software

Support Protocol 1: Post‐Processing Deconvolution

  Materials
  • Confocal images (see protocol 1)
  • AutoQuant Image Deconvolution Software (Media Cybernetics)

Basic Protocol 2: Dendritic Spine Modeling and Reconstruction with Neurolucida 360

  Materials
  • Image data with known scaling either embedded within the file or written in your laboratory notebook (see protocol 2Support Protocol)
  • Neurolucida 360 v2.7 or later (MBF Bioscience)
  • Neurolucida 360 Explorer (MBF Bioscience)

Alternate Protocol 1: Spine Classification

  Materials
  • Data file from Neurolucida 360 with modeled dendritic spines
  • Neurolucida 360 v2.7 or later (MBF Bioscience)
  • Neurolucida 360 Explorer (MBF Bioscience)

Basic Protocol 3: Imaging Complete Neurons

  Materials
  • Neuron to be imaged
  • Confocal microscope with 10× objective and 63× or 100× oil‐immersion objective
  • Image capture software

Basic Protocol 4: Neuron Reconstruction Using Neurolucida 360

  Materials
  • Image data with known scaling either embedded within the file or written in your laboratory notebook
  • Neurolucida 360 v2.7 or later (MBF Bioscience)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Benavides‐Piccione, R., Ballesteros‐Yanez, I., DeFelipe, J., and Yuste, R. 2002. Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31:337‐346. doi: 10.1023/A:1024134312173.
  Bloss, E.B., Janssen, W.G., Ohm, D.T., Yuk, F.J., Wadsworth, S., Saardi, K.M., McEwen, B.S., and Morrison, J.H. 2011. Evidence for reduced experience‐dependent dendritic spine plasticity in the aging prefrontal cortex. J. Neurosci. 31:7831‐7839. doi: 10.1523/JNEUROSCI.0839‐11.2011.
  Boyan, G. and Liu, Y. 2014. Dye coupling and immunostaining of astrocyte‐like glia following intracellular injection of fluorochromes in brain slices of the grasshopper, Schistocerca gregaria. Methods Mol. Biol. 1082:99‐113. doi: 10.1007/978‐1‐62703‐655‐9_7.
  Brennan, A.R., Yuan, P., Dickstein, D.L., Rocher, A.B., Hof, P.R., Manji, H., and Arnsten, A.F. 2009. Protein kinase C activity is associated with prefrontal cortical decline in aging. Neurobiol. Aging 30:782‐792. doi: 10.1016/j.neurobiolaging.2007.08.020.
  Carlisle, H.J. and Kennedy, M.B. 2005. Spine architecture and synaptic plasticity. Trends Neurosci. 28:182‐187. doi: 10.1016/j.tins.2005.01.008.
  Dickstein, D.L., Weaver, C.M., Luebke, J.I., and Hof, P.R. 2013. Dendritic spine changes associated with normal aging. Neuroscience 251:21‐32. doi: 10.1016/j.neuroscience.2012.09.077.
  Dickstein, D.L., Kabaso, D., Rocher, A.B., Luebke, J.I., Wearne, S.L., and Hof, P.R. 2007. Changes in the structural complexity of the aged brain. Aging Cell 6:275‐284. doi: 10.1111/j.1474‐9726.2007.00289.x.
  Ding, J.B., Takasaki, K.T., and Sabatini, B.L. 2009. Supraresolution imaging in brain slices using stimulated‐emission depletion two‐photon laser scanning microscopy. Neuron 63:429‐437. doi: 10.1016/j.neuron.2009.07.011.
  Donohue, D.E. and Ascoli, G.A. 2011. Automated reconstruction of neuronal morphology: An overview. Brain Res. Rev. 67:94‐102. doi: 10.1016/j.brainresrev.2010.11.003.
  Dumitriu, D., Rodriguez, A., and Morrison, J.H. 2011. High‐throughput, detailed, cell‐specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat. Protoc. 6:1391‐1411. doi: 10.1038/nprot.2011.389.
  Durand, C.M., Perroy, J., Loll, F., Perrais, D., Fagni, L., Bourgeron, T., Montcouquiol, M., and Sans, N. 2012. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin‐dependent mechanism. Mol. Psychiatry 17:71‐84. doi: 10.1038/mp.2011.57.
  Ethell, I.M. and Pasquale, E.B. 2005. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 75:161‐205. doi: 10.1016/j.pneurobio.2005.02.003.
  Gibson, S.F. and Lanni, F. 1992. Experimental test of an analytical model of aberration in an oil‐immersion objective lens used in three‐dimensional light microscopy. J. Opt. Soc. Am. A. 9:154‐166. doi: 10.1364/JOSAA.9.000154.
  Golden, S.A., Christoffel, D.J., Heshmati, M., Hodes, G.E., Magida, J., Davis, K., Cahill, M.E., Dias, C., Ribeiro, E., Ables, J.L., Kennedy, P.J., Robison, A.J., Gonzalez‐Maeso, J., Neve, R.L., Turecki, G., Ghose, S., Tamminga, C.A., and Russo, S.J. 2013. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat. Med. 19:337‐344. doi: 10.1038/nm.3090.
  Hao, J., Rapp, P.R., Leffler, A.E., Leffler, S.R., Janssen, W.G., Lou, W., McKay, H., Roberts, J.A., Wearne, S.L., Hof, P.R., and Morrison, J.H. 2006. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J. Neurosci. 26:2571‐2578. doi: 10.1523/JNEUROSCI.3440‐05.2006.
  Hara, Y., Rapp, P.R., and Morrison, J.H. 2012. Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. Age 34:1051‐1073. doi: 10.1007/s11357‐011‐9278‐5.
  Harris, K.M. and Stevens, J.K. 1989. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9:2982‐2997.
  Harris, K.M., Jensen, F.E., and Tsao, B. 1992. Three‐dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long‐term potentiation. J. Neurosci. 12:2685‐2705.
  Hayashi‐Takagi, A., Barker, P.B., and Sawa, A. 2011. Readdressing synaptic pruning theory for schizophrenia: Combination of brain imaging and cell biology. Commun. Integr. Biol. 4:211‐212. doi: 10.4161/cib.4.2.14492.
  Holmes, T.J. 1992. Blind deconvolution of quantum‐limited incoherent imagery: Maximum‐likelihood approach. J. Opt. Soc. Am. A. 9:1052‐1061. doi: 10.1364/JOSAA.9.001052.
  Hung, A.Y., Futai, K., Sala, C., Valtschanoff, J.G., Ryu, J., Woodworth, M.A., Kidd, F.L., Sung, C.C., Miyakawa, T., Bear, M.F., Weinberg, R.J., and Sheng, M. 2008. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J. Neurosci. 28:1697‐1708. doi: 10.1523/JNEUROSCI.3032‐07.2008.
  Hutsler, J.J. and Zhang, H. 2010. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309:83‐94. doi: 10.1016/j.brainres.2009.09.120.
  Jones, E.G. and Powell, T.P. 1969. Morphological variations in the dendritic spines of the neocortex. J. Cell. Sci. 5:509‐529.
  Kasai, H., Fukuda, M., Watanabe, S., Hayashi‐Takagi, A., and Noguchi, J. 2010. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33:121‐129. doi: 10.1016/j.tins.2010.01.001.
  Knafo, S., Alonso‐Nanclares, L., Gonzalez‐Soriano, J., Merino‐Serrais, P., Fernaud‐Espinosa, I., Ferrer, I., and DeFelipe, J. 2009a. Widespread changes in dendritic spines in a model of Alzheimer's disease. Cereb. Cortex 19:586‐592. doi: 10.1093/cercor/bhn111.
  Knafo, S., Venero, C., Merino‐Serrais, P., Fernaud‐Espinosa, I., Gonzalez‐Soriano, J., Ferrer, I., Santpere, G., and DeFelipe, J. 2009b. Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. J. Pathol. 219:41‐51. doi: 10.1002/path.2565.
  Maze, I., Covington, H.E., 3rd, Dietz, D.M., LaPlant, Q., Renthal, W., Russo, S.J., Mechanic, M., Mouzon, E., Neve, R.L., Haggarty, S.J., Ren, Y., Sampath, S.C., Hurd, Y.L., Greengard, P., Tarakhovsky, A., Schaefer, A., and Nestler, E.J. 2010. Essential role of the histone methyltransferase G9a in cocaine‐induced plasticity. Science 327:213‐216. doi: 10.1126/science.1179438.
  Merino‐Serrais, P., Knafo, S., Alonso‐Nanclares, L., Fernaud‐Espinosa, I., and DeFelipe, J. 2011. Layer‐specific alterations to CA1 dendritic spines in a mouse model of Alzheimer's disease. Hippocampus 21:1037‐1044. doi: 10.1002/hipo.20861.
  Nasse, M.J. and Woehl, J.C. 2010. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. J. Opt. Soc. Am. A. 27:295‐302. doi: 10.1364/JOSAA.27.000295.
  Nimchinsky, E.A., Sabatini, B.L., and Svoboda, K. 2002. Structure and function of dendritic spines. Annu. Rev. Physiol. 64:313‐353. doi: 10.1146/annurev.physiol.64.081501.160008.
  Peters, A. and Kaiserman‐Abramof, I.R. 1970. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127:321‐355. doi: 10.1002/aja.1001270402.
  Phillips, M. and Pozzo‐Miller, L. 2015. Dendritic spine dysgenesis in autism related disorders. Neurosci. Lett. 601:30‐40. doi: 10.1016/j.neulet.2015.01.011.
  Price, K.A., Varghese, M., Sowa, A., Yuk, F., Brautigam, H., Ehrlich, M.E., and Dickstein, D.L. 2014. Altered synaptic structure in the hippocampus in a mouse model of Alzheimer's disease with soluble amyloid‐beta oligomers and no plaque pathology. Mol. Neurodegener. 9:41. doi: 10.1186/1750‐1326‐9‐41.
  Radley, J.J., Rocher, A.B., Rodriguez, A., Ehlenberger, D.B., Dammann, M., McEwen, B.S., Morrison, J.H., Wearne, S.L., and Hof, P.R. 2008. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507:1141‐1150. doi: 10.1002/cne.21588.
  Ramos‐Miguel, A., Barr, A.M., and Honer, W.G. 2015. Spines, synapses, and schizophrenia. Biol. Psychiatry 78:741‐743. doi: 10.1016/j.biopsych.2015.08.035.
  Rocher, A.B., Crimins, J.L., Amatrudo, J.M., Kinson, M.S., Todd‐Brown, M.A., Lewis, J., and Luebke, J.I. 2010. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp. Neurol. 223:385‐393. doi: 10.1016/j.expneurol.2009.07.029.
  Rodriguez, A., Ehlenberger, D.B., Hof, P.R., and Wearne, S.L. 2006. Rayburst sampling, an algorithm for automated three‐dimensional shape analysis from laser scanning microscopy images. Nat. Protoc. 1:2152‐2161. doi: 10.1038/nprot.2006.313.
  Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., and Wearne, S.L. 2008. Automated three‐dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3:e1997. doi: 10.1371/journal.pone.0001997.
  Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S.C., Morrison, J.H., Hof, P.R., and Wearne, S.L. 2003. Automated reconstruction of three‐dimensional neuronal morphology from laser scanning microscopy images. Methods 30:94‐105. doi: 10.1016/S1046‐2023(03)00011‐2.
  Selvas, A., Coria, S.M., Kastanauskaite, A., Fernaud‐Espinosa, I., DeFelipe, J., Ambrosio, E., and Miguens, M. 2015. Rat‐strain dependent changes of dendritic and spine morphology in the hippocampus after cocaine self‐administration. Addict. Biol. ePub ahead of print. doi: 10.1111/adb.12294.
  Shansky, R.M., Hamo, C., Hof, P.R., McEwen, B.S., and Morrison, J.H. 2009. Stress‐induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19:2479‐2484. doi: 10.1093/cercor/bhp003.
  Spacek, J. and Hartmann, M. 1983. Three‐dimensional analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices. Anat. Embryol. 167:289‐310. doi: 10.1007/BF00298517.
  Steele, J.W., Brautigam, H., Short, J.A., Sowa, A., Shi, M., Yadav, A., Weaver, C.M., Westaway, D., Fraser, P.E., St George‐Hyslop, P.H., Gandy, S., Hof, P.R., and Dickstein, D.L. 2014. Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model. J. Comp. Neurol. 522:2319‐2335. doi: 10.1002/cne.23536.
  Vecellio, M., Schwaller, B., Meyer, M., Hunziker, W., and Celio, M.R. 2000. Alterations in Purkinje cell spines of calbindin D‐28 k and parvalbumin knock‐out mice. Eur. J. Neurosci. 12:945‐954. doi: 10.1046/j.1460‐9568.2000.00986.x.
  Wallace, W. and Bear, M.F. 2004. A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24:6928‐6938. doi: 10.1523/JNEUROSCI.1110‐04.2004.
  Wearne, S.L., Rodriguez, A., Ehlenberger, D.B., Rocher, A.B., Henderson, S.C., and Hof, P.R. 2005. New techniques for imaging, digitization and analysis of three‐dimensional neural morphology on multiple scales. Neuroscience 136:661‐680. doi: 10.1016/j.neuroscience.2005.05.053.
Internet Resources
  https://www.youtube.com/watch?v=HczuQjeNcR4&feature=youtu.be
  Drs. Dickstein and Tappan hosted a webinar on this topic based on a previous version of Neurolucida 360. The recorded version of the webinar is available for viewing here.
  http://www.zeiss.com/microscopy/en_us/products/microscope‐software/zen‐lite.html
  Zen Black image acquisition software described in the protocol. Free versions or free trials are available from the vendor.
  http://www.mediacy.com/index.aspx?page=AutoQuant
  AutoQuant image deconvolution software (Media Cybernetics) described in the protocol. Free versions or free tria4sls are available from the vendor.
  http://www.mbfbioscience.com/neurolucida360
  Neurolucida 360 automated neuron reconstruction software (MBF Bioscience) described in the protocol. Free versions or free trials are available from the vendor.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library