The Movement Tracker: A Flexible System for Automated Movement Analysis in Invertebrate Model Organisms

Laurent Mouchiroud1, Vincenzo Sorrentino1, Evan G. Williams1, Matteo Cornaglia2, Michael V. Frochaux3, Tao Lin1, Amandine A. Nicolet‐dit‐Félix1, Gopal Krishnamani1, Tarik Ouhmad1, Martin A.M. Gijs2, Bart Deplancke3, Johan Auwerx1

1 Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, 2 Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, 3 Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.37
DOI:  10.1002/cpns.17
Online Posting Date:  October, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high‐throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross‐platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high‐throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. © 2016 by John Wiley & Sons, Inc.

Keywords: model organisms; software; movement; neurodegeneration; aging; C. elegans; D. melanogaster

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Experimental Design for Movement Tracking With C. elegans Using the Movement Tracker
  • Alternate Protocol 1: Adult C. elegans on Chip
  • Alternate Protocol 2: D. melanogaster Movement
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Experimental Design for Movement Tracking With C. elegans Using the Movement Tracker

  Materials
  • Nematode growth medium (NGM) agar plates (see recipe) with and without 5 mg/ml fluorouracil (5‐FU; see recipe)
  • Bacterial solution: E. coli strains OP50 and HT115
  • C. elegans
  • Worm pick made of 30‐G platinum wire and glass Pasteur pipet
  • Stereomicroscope (e.g., Nikon SMZ1000 with Plan Apo 0.5× WD123 objective)
  • Color digital camera with microscope‐computer link (e.g., Nikon DS‐Fi1)
  • Camera control unit (e.g., Nikon DS‐L2)
  • Recording software to make videos from the digitized microscope (e.g., NIS‐Elements F, neMESYS User Interface, AutoScreenRecorder Pro)
  • Computer running the following software programs:
    • MATLAB
    • The Movement Tracker (available at http://auwerx‐lab.epfl.ch/page‐130312‐en.html)
    • Microsoft Office Suite
    • Appropriate graphing software
NOTE: All solutions and equipment coming into contact with C. elegans must be sterile, and aseptic technique should be used accordingly.

Alternate Protocol 1: Adult C. elegans on Chip

  Materials
  • Nematode growth medium (NGM) agar plates (see recipe)
  • S medium (see recipe)
  • Bacterial solution: E. coli strains OP50 and HT115
  • C. elegans
  • Worm pick made of 30‐G platinum wire and glass Pasteur pipet
  • 1‐ml borosilicate H‐TLL‐PE syringe (e.g., Innovative Labor Systeme)
  • Microfluidic chip
  • Syringe pump (e.g., Cetoni Nemesys)
  • Microline ethyl vinyl acetate tubing (0.51 mm i.d., 1.52 mm o.d.; e.g., Fisher Scientific)
  • Shut‐off fluidic valve (e.g., Upchurch Shut‐Off Valve, P‐783)
  • Stereomicroscope (e.g., Nikon SMZ1000 with Plan Apo 0.5× WD123 objective)
  • Color digital camera with microscope‐computer link (e.g., Nikon DS‐Fi1)
  • Camera control unit (e.g., Nikon DS‐L2)
  • Recording software to make videos from the digitized microscope (e.g., NIS‐Elements F, neMESYS User Interface, AutoScreenRecorder Pro)
  • Computer running the following software programs:
    • MATLAB
    • The Movement Tracker (available at http://auwerx‐lab.epfl.ch/page‐130312‐en.html)
    • Microsoft Office Suite
    • Appropriate graphing software
NOTE: All solutions and equipment coming into contact with C. elegans must be sterile, and aseptic technique should be used accordingly.

Alternate Protocol 2: D. melanogaster Movement

  Materials
  • Drosophila melanogaster strain w1118 and DGRP strains 707 (stock no. 25200), 335 (stock no. 25183), 427 (stock no. 25193), 358 (stock no. 25185), and 786 (stock no. 25206) available from the Bloomington Drosophila Stock Center at Indiana University (http://flystocks.bio.indiana.edu/)
  • Cornmeal‐agar tube (see recipe)
  • Incubator
  • Tracking pad (e.g., BioRad Mini‐Protean spacer plates)
  • Drosophila gassing station with CO 2 gas
  • Tissue paper
  • SLR camera on fixed tripod with a macro objective
  • Computer running the following software programs:
    • MATLAB
    • The Movement Tracker (available at http://auwerx‐lab.epfl.ch/page‐130312‐en.html)
    • Microsoft Office Suite
    • Appropriate graphing software
NOTE: The same protocol can be used to assay basal movement or climbing speed.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Antebi, A. 2007. Genetics of aging in Caenorhabditis elegans. PLoS Genet. 3:1565‐1571. doi: 10.1371/journal.pgen.0030129.
  Benzer, S. 1973. Genetic dissection of behavior. Sci. Am. 229:24‐37. doi: 10.1038/scientificamerican1273‐24.
  Branson, K., Robie, A.A., Bender, J., Perona, P., and Dickinson, M.H. 2009. High‐throughput ethomics in large groups of Drosophila. Nat. Methods 6:451‐457. doi: 10.1038/nmeth.1328.
  Cornaglia, M., Mouchiroud, L., Marette, A., Narasimhan, S., Lehnert, T., Jovaisaite, V., Auwerx, J., and Gijs, M.A. 2015. An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long‐term live imaging. Sci. Rep. 5:10192. doi: 10.1038/srep10192.
  Greenspan, R.J. 2004. Fly Pushing: The Theory and Practice of Drosophila Genetics, 2nd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.
  Helfand, S.L. and Rogina, B. 2003. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet. 37:329‐348. doi: 10.1146/annurev.genet.37.040103.095211.
  Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and Auwerx, J. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451‐457. doi: 10.1038/nature12188.
  Husson, S.J., Costa, W.S., Schmitt, C., and Gottschalk, A. 2012. Keeping track of worm trackers. WormBook 22:1‐17. doi: 10.1895/wormbook.1.156.1.
  Kamath, R.S., Martinez‐Campos, M., Zipperlan, P., Fraser, A.G., and Ahringer, J. 2000. Effectiveness of specific RNA‐mediated interference through ingested double‐stranded RNA in Caenorhabditis elegans. Genome Biol. 2:research0002.1. doi: 10.1186/gb‐2000‐2‐1‐research0002.
  Mackay, T.F., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., Casillas, S., Han, Y., Magwire, M.M., Cridland, J.M., Richardson, M.F., Anholt, R.R., Barron, M., Bess, C., Blankenburg, K.P., Carbone, M.A., Castellano, D., Chaboub, L., Duncan, L., Harris, Z., Javaid, M., Jayaseelan, J.C., Jhangiani, S.N., Jordan, K.W., Lara, F., Lawrence, F., Lee, S.L., Librado, P., Linheiro, R.S., Lyman, R.F., Mackey, A.J., Munidasa, M., Muzny, D.M., Nazareth, L., Newsham, I., Perales, L., Pu, L.L., Qu, C., Ramia, M., Reid, J.G., Rollmann, S.M., Rozas, J., Saada, N., Turlapati, L., Worley, K.C., Wu, Y.Q., Yamamoto, A., Zhu, Y., Bergman, C.M., Thornton, K.R., Mittelman, D., and Gibbs, R.A. 2012. The Drosophila melanogaster Genetic Reference Panel. Nature 482:173‐178. doi: 10.1038/nature10811.
  Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K., Guarente, L., and Auwerx, J. 2013. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430‐441. doi: 10.1016/j.cell.2013.06.016.
  Ramot, D., Johnson, B.E., Berry, T.L., Jr., Carnell, L., and Goodman, M.B. 2008. The Parallel Worm Tracker: A platform for measuring average speed and drug‐induced paralysis in nematodes. PloS One 3:e2208. doi: 10.1371/journal.pone.0002208.
  Williams, E.G., Mouchiroud, L., Frochaux, M., Pandey, A., Andreux, P.A., Deplancke, B., and Auwerx, J. 2014. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLoS Genet. 10:e1004673. doi: 10.1371/journal.pgen.1004673.
  York, J.M., Blevins, N.A., McNeil, L.K., and Freund, G.G. 2013. Mouse short‐ and long‐term locomotor activity analyzed by video tracking software. J. Vis. Exp. 76:50252. doi: 10.3791/50252.
Internet Resources
  http://auwerx‐lab.epfl.ch/page‐130312‐en.html
  The Movement Tracker software and manual.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library