Fluidics

Pearlson P. Austin Suthanthiraraj1, Steven W. Graves1

1 Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 1.2
DOI:  10.1002/0471142956.cy0102s65
Online Posting Date:  July, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The use of fluidics is implicit in a technology named “flow cytometry,” which flows a cell or particle through a sensing volume to obtain serial analysis of particles on a one by one basis. This flow of particles enables flow cytometry to collect information on multiple particle populations, giving it a distinct advantage over bulk analysis approaches. Moreover, flow cytometers can analyze thousands of particles per second in a single flowing stream. Additionally, use of volumetric sample delivery makes it possible for flow cytometers to accurately count cells and particles. Furthermore, the analysis results can be coupled with a fluidic diversion mechanism to sort and collect particles based on desired properties. Finally, when high‐throughput sampling technologies are employed to rapidly change the input of the sample stream, a flow cytometer can become an integral tool for high‐throughput screening. The above properties have made flow cytometry useful in a wide range of biomedical applications. In this unit we will present an overview of fluidic systems that make flow cytometry possible. This will introduce historical approaches, explanations of the commonly implemented current fluidics, and brief discussions of potential future fluidics where appropriate. Curr. Protoc. Cytom. 65:1.2.1‐1.2.14. © 2013 by John Wiley & Sons, Inc.

Keywords: cell analysis; cell sorting; high‐throughput screening; fluidic systems; flow cytometry; FACS; microfluidics

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Sample Delivery
  • Positioning of Cells for Analysis
  • Sorting
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   FigureFigure 1.2.1 A conceptual diagram of the three primary functions of the fluidics of a flow cytometer. Many options are possible to accomplish each of these functions. Potential examples are shown.
  •   FigureFigure 1.2.2 The principle of hydrodynamic focusing. Sheath fluid (black arrows) flows at a high linear velocity compared to the slow moving sample stream (gray with white arrows). The fast moving sheath accelerates and focuses the sample stream to a narrow core as it exits the flow cell or nozzle, or the capillary tapers towards the exit orifice.
  •   FigureFigure 1.2.3 Optical analysis of a focused sample stream in a typical hydrodynamic focusing flow cytometer. The sample stream is surrounded by a clean sheath fluid that is not pictured.
  •   FigureFigure 1.2.4 Typical configurations of flow cytometer flow cells for (A) analysis, (B) electrostatic droplet sorting after analysis in a flow cell, and (C) analysis directly in the jet‐in‐air system after ejection from a nozzle.
  •   FigureFigure 1.2.5 Traditional delivery methods. (A) Pressure differential, where a pressure head is introduced into a sealed sample tube to drive sample to the flow cytometer. (B) Syringe pumps in combination with automatic valves that can first fill a fill line and then drive the sample to the cytometer. (C) A simple peristaltic pump that pumps an unsealed sample to the flow cytometer.

Videos

Literature Cited

Literature Cited
   Applegate, R. Jr., Squier, J., Vestad, T., Oakey, J., and Marr, D. 2004. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Optics Express 12:4390‐4398.
   Applegate, R.W.Jr., Marr, D.W.M., Squier, J., and Graves, S.W. 2009. Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars. Optics Express 17:16731‐16738.
   Austin Suthanthiraraj, P.P., Piyasena, M.E., Woods, T.A., Naivar, M.A., Lopez, G.P., and Graves, S.W. 2012. One‐dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259‐271.
   Blankenstein, G., Scampavia, L., Ruzicka, J., and Christian, G. 1998. Coaxial flow mixer for real‐time monitoring of cellular responses in flow cytometry. Cytometry 25:200‐204.
   Bonner, W., Hulett, H., Sweet, R., and Herzenberg, L. 1972. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43:404‐409.
   Crosland‐Taylor, P. 1953. A device for counting small particles suspended in a fluid through a tube. Nature 171:37‐38.
   Cushing, K.W., Piyasena, M.E., Carroll, N.J., Maestas, G.C., Lopez, B.A., Edwards, B.S., Graves, S.W., and Lopez, G.P. 2013. Elastomeric negative acoustic contrast particles for affinity capture assays. Anal. Chem. 85:2208‐2215.
   Davies, D. 2007. Cell sorting by flow cytometry. In Flow Cytometry pp. 257‐276. Springer.
   den Engh, G. 2000. High‐speed cell sorting. In Emerging Tools for Single‐Cell Analysis: Advances in Optical Measurement Technologies, vol. 2. p. 21. Wiley‐Liss, New York.
   Di Carlo, D. 2009. Inertial microfluidics. Lab Chip 9:3038‐3046.
   Di Carlo, D., Irimia, D., Tompkins, R.G., and Toner, M. 2007. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104:18892‐18897.
   Di Carlo, D., Jon, F., Irimia, D., Tompkins, R.G., and Toner, M. 2008. Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80:2204‐2211.
   Edd, J.F., Di Carlo, D., Humphry, K.J., Köster, S., Irimia, D., Weitz, D.A., and Toner, M. 2008. Controlled encapsulation of single‐cells into monodisperse picolitre drops. Lab Chip 8:1262‐1264.
   Edwards, B.S., Kuckuck, F., and Sklar, L.A. 1999. Plug flow cytometry: An automated coupling device for rapid sequential flow cytometric sample analysis. Cytometry 37:156‐159.
   Edwards, B.S., Kuckuck, F.W., Prossnitz, E.R., Ransom, J.T., and Sklar, L.A. 2001. HTPS flow cytometry: A novel platform for automated high throughput drug discovery and characterization. J. Biomol. Screen. 6:83‐90.
   Edwards, B.S., Oprea, T., Prossnitz, E.R., and Sklar, L.A. 2004. Flow cytometry for high‐throughput, high‐content screening. Curr. Opin. Chem. Biol. 8:392‐398.
   Edwards, B.S., Young, S.M., Saunders, M.J., Bologa, C., Oprea, T.I., Ye, R.D., Prossnitz, E.R., Graves, S.W., and Sklar, L.A. 2007. High‐throughput flow cytometry for drug discovery. Expert Opin. Drug Discov. 2:685‐696.
   Edwards, B.S., Young, S.M., Ivnitsky‐Steele, I., Ye, R., Prossnitz, E.R., and Sklar, L.A. 2009. High‐content screening: Flow cytometry analysis. In Methods Molecular Biology, vol. 486. pp. 151‐165. Springer.
   Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H., and Quake, S.R. 1999. A microfabricated fluorescence‐activated cell sorter. Nature Biotechnol. 17:1109‐1111.
   Fulwyler, M.J. 1965. Electronic separation of biological cells by volume. Science 150:910.
   Goda, K., Ayazi, A., Gossett, D.R., Sadasivam, J., Lonappan, C.K., Sollier, E., Fard, A.M., Hur, S.C., Adam, J., and Murray, C. 2012. High‐throughput single‐microparticle imaging flow analyzer. Proc. Natl. Acad. Sci. U.S.A. 109:11630‐11635.
   Goddard, G. and Kaduchak, G. 2005. Ultrasonic particle concentration in a line‐driven cylindrical tube. J. Acoust. Soc. Am. 117:3440‐3447.
   Goddard, G., Martin, J.C., Graves, S.W., and Kaduchak, G. 2006. Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry A 69:66‐74.
   Graves, S.W., Nolan, J.P., Jett, J.H., Martin, J.C., and Sklar, L.A. 2002. Nozzle design parameters and their effects on rapid sample delivery in flow cytometry. Cytometry 47:127‐137.
   Gray, D., Göhde, W., Carter, N., Heiden, T., and Morris, P. 1989. Separation of pancreatic islets by fluorescence‐activated sorting. Diabetes 38:133.
   Hammarström, B., Laurell, T., and Nilsson, J. 2012. Seed particle enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:4296‐4304.
   Howell, P.B. Jr., Golden, J.P., Hilliard, L.R., Erickson, J.S., Mott, D.R., and Ligler, F.S. 2008. Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8:1097‐1103.
   Hsu, C.H., Di Carlo, D., Chen, C., Irimia, D., and Toner, M. 2008. Microvortex for focusing, guiding and sorting of particles. Lab Chip 8:2128‐2134.
   Huh, D., Tung, Y.C., Wei, H.H., Grotberg, J.B., Skerlos, S.J., Kurabayashi, K., and Takayama, S. 2002. Use of air‐liquid two‐phase flow in hydrophobic microfluidic channels for disposable flow cytometers. Biomed. Microdevices 4:141‐149.
   Huh, D., Gu, W., Kamotani, Y., Grotberg, J.B., and Takayama, S. 2005. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26:R73.
   Hur, S.C., Tse, H.T.K., and Di Carlo, D. 2010. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274‐280.
   Jaffrin, M. and Shapiro, A. 1971. Peristaltic pumping. Annu. Rev. Fluid Mech. 3:13‐37.
   Kachel, V., Fellner‐Feldegg, H., and Menke, E. 1990. Hydrodynamic properties of flow cytometry instruments. Flow Cytom. Sorting 27‐44.
   Kamentsky, L. and Melamed, M. 1969. Instrumentation for automated examinations of cellular specimens. Proc. IEEE 57:2007‐2016.
   Keller, R.A., Ambrose, W.P., Goodwin, P.M., Jett, J.H., Martin, J.C., and Wu, M. 1996. Single‐molecule fluorescence analysis in solution. Appl. Spectrosc. 50:12A‐32A.
   King, D., Cappione, A., Ilkov, F., Goldman, B., Lefebvre, R., Pittaro, R., and Dixon, G. 2010. Progress in capillary flow cytometry. In The Microflow Cytometer. p. 69. Pan Stanford Publishing, Stanford, Calif.
   Laurell, T., Petersson, F., and Nilsson, A. 2007. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36:492‐506.
   Lee, G.B., Chang, C.C., Huang, S.B., and Yang, R.J. 2006. The hydrodynamic focusing effect inside rectangular microchannels. J. Micromech. Microeng. 16:1024.
   McKenna, B.K., Selim, A., Bringhurst, F.R., and Ehrlich, D.J. 2008. 384‐Channel parallel microfluidic cytometer for rare‐cell screening. Lab Chip 9:305‐310.
   McKenna, B.K., Evans, J.G., Cheung, M.C., and Ehrlich, D.J. 2011. A parallel microfluidic flow cytometer for high‐content screening. Nat. Methods 8:401‐403.
   Moldavan, A. 1934. Photo‐electric technique for the counting of microscopical cells. Science 80:188‐189.
   Nilsson, A., Petersson, F., Jönsson, H., and Laurell, T. 2004. Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131‐135.
   Nolan, J.P., Posner, R.G., Martin, J.C., Habbersett, R., and Sklar, L.A. 2005. A rapid mix flow cytometer with subsecond kinetic resolution. Cytometry 21:223‐229.
   Oakey, J., Applegate, R.W.Jr., Arellano, E., Carlo, D.D., Graves, S.W., and Toner, M. 2010. Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 82:3862‐3867.
   Patel, K.D. and Perroud, T.D. 2010. Miniaturized sorters: Optical micro fluorescence activated cell sorter. In The Microflow Cytometer. pp. 221‐242. Pan Stanford Publishing.
   Piyasena, M.E., Austin Suthanthiraraj, P.P., Applegate, R.W.Jr., Goumas, A.M., Woods, T.A., Lo'pez, G.P., and Graves, S.W. 2012. Multinode acoustic focusing for parallel flow cytometry. Anal. Chem. 84:1831‐1839.
   Pulak, R. 2006. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS™ flow‐sorting system. Methods Mol. Biol. 351:275‐286.
   Rich, C. and Howes, G. 2010. The Accuri C6 flow cytometer—A small revolution. In The Microflow Cytometer. p. 53. Pan Stanford Publishing, Stanford, Calif.
   Scampavia, L., Blankenstein, G., Ruzicka, J., and Christian, G. 1995. A coaxial jet mixer for rapid kinetic analysis in flow injection and flow injection cytometry. Anal. Chem. 67:2743‐2749.
   Schmid, I., Lambert, C., Ambrozak, D., Marti, G.E., Moss, D.M., and Perfetto, S.P. 2007. International Society for Analytical Cytology biosafety standard for sorting of unfixed cells. Cytometry A 71:414‐437.
   Seamer, L.C., Kuckuck, F., and Sklar, L.A. 1999. Sheath fluid control to permit stable flow in rapid mix flow cytometry. Cytometry 35:75‐79.
   Shapiro, H.M. 2003. Practical Flow Cytometry. Wiley‐Liss, Hoboken, New Jersey.
   Shen, F. and Price, J.H. 2001. Laser ablation cell sorting in scanning cytometry. BiOS 2001: The International Symposium on Biomedical Optics.
   Simonnet, C. and Groisman, A. 2005. Two‐dimensional hydrodynamic focusing in a simple microfluidic device. Appl. Phys. Lett. 87,114104.
   Simonnet, C. and Groisman, A. 2006. High‐throughput and high‐resolution flow cytometry in molded microfluidic devices. Anal. Chem. 78:5653‐5663.
   Sklar, L.A., Seamer, L.C., Kuckuck, F., Posner, R., Prossnitz, E., Edwards, B., and Nolan, J.P. 1998. Sample handling for kinetics and molecular assembly in flow cytometry. SPIE Proc. 3256:144‐153.
   Sklar, L.A., Edwards, B.S., Graves, S.W., Nolan, J.P., and Prossnitz, E.R. 2002. Flow cytometric analysis of ligand‐receptor interactions and molecular assemblies. Annu. Rev. Biophys. Biomol. Struct. 31:97‐119.
   Stewart, C.C. and Steinkamp, J.A. 1982. Quantitation of cell concentration using the flow cytometer. Cytometry 2:238‐243.
   Sundararajan, N., Pio, M.S., Lee, L.P., and Berlin, A.A. 2004. Three‐dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J. Microelectromechan. Syst. 13:559‐567.
   Wiklund, M., Toivonen, J., Tirri, M., Hanninen, P., and Hertz, H.M. 2004. Ultrasonic enrichment of microspheres for ultrasensitive biomedical analysis in confocal laser‐scanning fluorescence detection. J. Appl. Phys. 96:1242‐1248.
   Wolff, A., Perch‐Nielsen, I.R., Larsen, U., Friis, P., Goranovic, G., Poulsen, C.R., Kutter, J.P., and Telleman, P. 2003. Integrating advanced functionality in a microfabricated high‐throughput fluorescent‐activated cell sorter. Lab Chip 3:22‐27.
   Yang, S.Y., Hsiung, S.K., Hung, Y.C., Chang, C.M., Liao, T.L., and Lee, G.B. 2006. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas. Sci. Technol. 17:2001.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library