Principles of Resonance Energy Transfer

János Szöllősi1, Sándor Damjanovich1, Péter Nagy1, György Vereb1, László Mátyus1

1 University Medical School of Debrecen, Debrecen
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 1.12
DOI:  10.1002/0471142956.cy0112s38
Online Posting Date:  November, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes the basic principles of the fluorescence resonance energy (FRET) process. In addition, it characterizes available parameters and instruments for FRET measurements, discusses limitations, and shows a few examples of the application of FRET.

Keywords: fluorescence resonance energy transfer; Förster distance; tandem dyes; cell surface mapping

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Theory of FRET
  • Determination of Förster Distance (R0)
  • How to Measure FRET Efficiency
  • Choice of Instrument for FRET Measurement
  • Limitations of FRET Studies
  • Applications
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bacsó, Z., Bene, L., Bodnár, A., Matkó, J., and Damjanovich, S. 1996. A photobleaching energy transfer analysis of CD8/MHC‐I and LFA‐1/ICAM‐1 interactions in CTL‐target cell conjugates. Immunol. Lett. 54:151‐156.
   Bagossi, P., Horváth, G., Vereb, G., Szöllősi, J., and Tőzsér, J. 2005. Molecular modeling of nearly full‐length ErbB2 receptor. Biophys. J. 88:1354‐1363.
   Bastiaens, P.I.H. and Jovin, T.M. 1996. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent‐labeled protein kinase CβI. Proc. Natl. Acad. Sci. U.S.A. 93:8407‐8412.
   Bastiaens, P.I.H., Majoul, I.V., Verveer, P. J., Söling, H.‐D., and Jovin, T.M. 1996. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15:4246‐4253.
   Bene, L., Szöllősi, J., Szentesi, G., Damjanovich, L., Gáspár, R. Jr., Waldmann, T.A., and Damjanovich, S. 2005. Detection of receptor trimers on the cell surface by flow cytometric fluorescence energy homotransfer measurements. Biochim. Biophys. Acta. 1744:176‐198.
   Bhatia, S., Edidin, M., Almo, S.C., and Nathenson, S.G. 2005. Different cell surface oligomeric states of B7‐1 and B7‐2: Implications for signaling. Proc. Natl. Acad. Sci. U.S.A. 102:15569‐15574.
   Carraway, K.L. III., Koland, J.G., and Cerione, R.A. 1989. Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membranes by fluorescence resonance energy transfer. J. Biol. Chem. 264:8699‐8707.
   Cemerski, S. and Shaw, A. 2006. Immune synapses in T‐cell activation. Curr. Opin. Immunol. 18:298‐304.
   Chen, R.F. and Knutson, J.R. 1988. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: Energy transfer to nonfluorescent dimers. Anal. Biochem. 172:61‐77.
   Cicchetti, G., Biernacki, M., Farquharson, J., and Allen, P.G. 2004. A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane structures in fibroblasts. Biochemistry 43:1939‐1949.
   Clegg, R.M. 1995. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6:103‐110.
   Crissman, H.A. and Steinkamp, J.A. 2001. Flow cytometric fluorescence lifetime measurements. Methods Cell Biol. 63:131‐148.
   Dale, R.E., Eisinger, J., and Blumberg, W.E. 1979. The orientational freedom of molecular probes: The orientation factor in intramolecular energy transfer. Biophys. J. 26:161‐194.
   Damjanovich, S., Gáspár, R., and Pieri, C. 1997. Dynamic receptor superstructure at plasma membrane. Q. Rev. Biophys. 30:67‐106.
   Dewey, T.G. and Hammes, G.G. 1980. Calculation of fluorescence resonance energy transfer on surfaces. Biophys. J. 32:1023‐1035.
   Ecker, R.C., de Martin, R., Steiner, G.E., and Schmid, J.A. 2004. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis. Cytometry A 59:172‐181.
   Evanko, D.S. and Haydon, P.G. 2005. Elimination of environmental sensitivity in a cameleon FRET‐based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37:341‐348.
   Förster, T. 1946. Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166‐175.
   Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz . Ann. Phys. (Leipzig) 2:55‐75.
   Gadella, T.W.J. and Jovin, T.M. 1995. Oligomerization of epidermal growth factor receptors on A431 cells studied by time‐resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129:1543‐1558.
   Gettins, P., Beechem, J.M., Crews, B.C., and Cunningham, L.W. 1990. Separation and localization of the four cysteine‐949 residues in human β2‐macroglobulin using fluorescence energy transfer. Biochemistry 29:7747‐7753.
   Ha, T., Enderle, Th., Odletree, D.F., Chemla, D.S., Selvin, P.R., and Weiss, S. 1996. Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U.S.A. 93:6264‐6268.
   Hanley, Q.S., Subramaniam, V., Arndt‐Jovin, D.J., and Jovin, T.M. 2001. Fluorescence lifetime imaging: Multi‐point calibration, minimum resolvable differences, and artifact suppression. Cytometry 43:248‐260.
   Hanley, Q.S., Lidke, K.A., Heintzmann, R., Arndt‐Jovin, D.J., and Jovin, T.M. 2005. Fluorescence lifetime imaging in an optically sectioning programmable array microscope (PAM). Cytometry A 67:112‐118.
   Horváth, G., Petrás, M., Szentesi, G., Fábián, A., Park, J.W., Vereb, G., and Szöllősi, J. 2005. Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 65:148‐157.
   Jares‐Erijman, E.A. and Jovin, T.M. 2003. FRET imaging. Nat. Biotechnol. 21:1387‐1395.
   Johnson, D.A., Leathers, V.L., Martinez, A.M., Walsh, D.A., and Fletcher, W.H. 1993. Fluorescence resonance energy transfer within a heterochromatic cAMP‐dependent protein kinase holoenzyme under equilibrium conditions: New insights into the conformational changes that result in cAMP‐dependent activation. Biochemistry 32:6402‐6410.
   Jovin, T.M. and Arndt‐Jovin, D.J. 1989a. Luminescence digital imaging microscopy. Ann. Rev. Biophys. Biophys. Chem. 18:271‐308.
   Jovin, T.M. and Arndt‐Jovin, D.J. 1989b. FRET microscopy: Digital imaging of fluorescence resonance energy transfer: Application in cell biology. In Microspectrofluorometry of Single Living Cells (E. Kohen, J.S. Ploem, and J.G. Hirschberg, eds.) pp. 99‐117. Academic Press, Orlando.
   Kosk‐Kosicka, D., Bzdega, T., and Wawrynow, A. 1989. Fluorescence energy transfer studies of purified erythrocyte Ca2+‐ATPase Ca2+‐regulated activation by oligomerization. J. Biol.Chem. 264:19495‐19499.
   Lidke, D.S., Nagy, P., Barisas, B.G., Heintzmann, R., Post, J.N., Lidke, K.A., Clayton, A.H., Arndt‐Jovin, D.J., and Jovin, T.M. 2003. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans. 31:1020‐1027.
   MacDonald, R.I. 1990. Characteristics of self‐quenching of the fluorescence of lipid‐conjugated rhodamine in membranes. J. Biol. Chem. 265:13533‐13539.
   Mahajan, N.P., Linder, K., Berry, G., Gordon, G.W., Heim, R., and Herman, B. 1998. Bcl‐2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotechnol. 6:547‐552.
   Maliwal, B.P., Kusba, J., and Lakowicz, J.R. 1995. Fluorescence energy transfer in one dimension: Frequency‐domain fluorescence study of DNA‐fluorophore complexes. Biopolymers 35:245‐255.
   Mathis, G. 1993. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39:1953‐1959.
   Matkó, J., Jenei, A., Mátyus, L., Ameloot, M., and Damjanovich, S. 1993. Mapping of cell surface protein‐patterns by combined fluorescence anisotropy and energy transfer measurements. J. Photochem. Photobiol. B Biol. 19:69‐73.
   Mátyus, L. 1992. Fluorescence resonance energy transfer measurements on cell surfaces: A spectroscopic tool for determining protein interactions . J. Photochem. Photobiol. B Biol. 12:323‐337.
   Mátyus, L., Szöllősi, J., and Jenei, A. 2006. Steady‐state fluorescence quenching applications for studying protein structure and dynamics. J. Photochem. Photobiol. B. 83:223‐236.
   Mekler, V.M. 1997. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem. Photobiol. 59:615‐620.
   Murakoshi, H., Iino, R., Kobayashi, T., Fujiwara, T., Ohshima, C., Yoshimura, A., and Kusumi, A. 2004. Single‐molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. U.S.A. 101:7317‐7322.
   Nagy, P., Bene, L., Balázs, M., Hyun, W.C., Lockett, S.J., Chiang, N.Y., Waldman, F., Feuerstein, B.G., Damjanovich, S., and Szöllősi, J. 1998a. EGF‐induced redistribution of erbB2 on breast tumor cells: Flow and image cytometric energy transfer measurements. Cytometry 32:120‐131.
   Nagy, P., Vámosi, G., Bodnár, A., Lockett, S.J., and Szöllősi, J. 1998b. Intensity‐based energy transfer measurements in digital imaging microscopy. Eur. Biophys. J. 27:377‐389.
   Nagy, P., Bene, L., Hyun, W.C., Vereb, G., Braun, M., Antz, C., Paysan, J., Damjanovich, S., Park, J.W., and Szöllősi, J. 2005. Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry A 67:86‐96.
   Nickolls, S.A. and Maki, R.A. 2006. Dimerization of the melanocortin 4 receptor: A study using bioluminescence resonance energy transfer. Peptides 27:380‐387.
   Nikolaev, V.O., Gambaryan, S., and Lohse, M.J. 2006. Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat. Methods 3:23‐25.
   Oida, T., Sako, Y., and Kusumi, A. 1993. Fluorescence lifetime imaging microscopy (flimscopy): Methodology development and application to studies of endosome fusion in single cells. Biophys. J. 64:676‐685.
   Ozinskas, A.J., Malak, H., Joshi, J., Szmacinski, H., Britz, J., Thompson, R.B., Koen, P.A., and Lakowicz, J.R. 1993. Homogeneous model immunoassay of thyroxin by phase modulation fluorescence spectroscopy. Anal. Biochem. 213:264‐270.
   Patterson, G.H., Piston, D.W., and Barisas, B.G. 2000. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284:438‐440.
   Sakai, R., Repunte‐Canonigo, V., Raj, C.D., and Knopfel, T. 2001. Design and characterization of a DNA‐encoded, voltage‐sensitive fluorescent protein. Eur. J. Neurosci. 13:2314‐2318.
   Sebestyén, Z., Nagy, P., Horváth, G, Vámosi, G., Debets, R., Gratama, J.W., Alexander, D.R., and Szöllősi, J. 2002. Long wavelength fluorophores and cell‐by‐cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual‐laser benchtop flow cytometer. Cytometry 48:124‐35.
   Shahrokh, Z., Verkman, A.S., and Shohet, S.B. 1991. Distance between skeletal protein 4.1 and the erythrocyte membrane bilayer measured by resonance energy transfer. J. Biol. Chem. 266:12082‐12089.
   Snyder, B. and Freire, E. 1982. Fluorescence energy transfer in two dimensions: A numeric solution for random and nonrandom distributions. Biophys. J. 40:137‐148.
   Steinkamp, J.A. and Crissman, H.A. 1993. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase‐sensitive flow cytometry. Cytometry 14:210‐216.
   Stryer, L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47:819‐846.
   Szentesi, G., Horváth, G., Bori, I., Vámosi, G., Szöllősi, J., Gáspár, R., Damjanovich, S., Jenei, A., and Mátyus, L. 2004. Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell‐by‐cell basis. Comput. Methods Programs Biomed. 75:201‐211.
   Szentesi, G., Vereb, G., Horváth, G., Bodnár, A., Fábián, Á., Matkó, J., Gáspár, R., Damjanovich, S., Mátyus, L., and Jenei, A. 2005. Computer program for analyzing donor photobleaching FRET image series. Cytometry 67A:119‐128.
   Szöllősi, J. and Alexander, D.R. 2003. The application of fluorescence resonance energy transfer to the investigation of phosphatases. Methods Enzymol. 366:203‐224.
   Szöllősi, J. and Damjanovich, S. 1994. Mapping of membrane structures by energy transfer measurements. In Mobility and Proximity in Biological Membranes. (S. Damjanovich, J. Szöllősi, L. Trón, and M. Edidin, eds.) pp. 49‐108. CRC Press, Boca Raton, Fla.
   Szöllősi, J., Nagy, P., Sebestyén, Z., Damjanovich, S., Park, J.W., and Mátyus, L. 2002. Applications of fluorescence resonance energy transfer for mapping biological membranes. J. Biotechnol. 82:251‐266.
   Szöllősi, J., Szabó, G., Somogyi, B., and Damjanovich, S. 1978. Simultaneous fluorescence labeling of human fibroblast cells with fluorescamine and propidium iodide. Acta Biochem. Biophys. Acad. Sci. Hung. 13:63‐66.
   Szöllősi, J., Trón, L., Damjanovich, S., Helliwell, S.H., Arndt‐Jovin, D.J., and Jovin, T.M. 1984. Fluorescence energy transfer measurements on cell surfaces: A critical comparison of steady‐state and flow cytometric methods. Cytometry 5:210‐216.
   Szöllősi, J., Damjanovich, S., and Mátyus, L. 1998. Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research. Cytometry 34:159‐179.
   Taylor, D.L., Reidler, J., Spudich, J.A., and Stryer, L. 1981. Detection of actin assembly by fluorescence energy transfer. J. Cell. Biol. 89:362‐367.
   Trón, L. 1994. Experimental methods to measure fluorescence resonance energy transfer. In Mobility and Proximity in Biological Membranes. (S. Damjanovich, J. Szöllősi, L. Trón, and M. Edidin, eds.) pp. 1‐47. CRC Press, Boca Raton, Fla.
   van Munster, E.B. and Gadella, T.W. Jr. 2004. Suppression of photobleaching‐induced artifacts in frequency‐domain FLIM by permutation of the recording order. Cytometry A 58:185‐194.
   Vereb, G., Meyer, C.K., and Jovin, T.M. 1997. Novel microscope‐based approaches for the investigation of protein‐protein interactions in signal transduction. In Interacting Protein Domains: Their Role in Signal and Energy Transduction. Volume 102, NATO ASI Series, H:Cell Biology. (L.M.G. Heilmeyer, ed.) pp. 49‐52. Springer Verlag, Berlin.
   Vereb, G., Matkó, J., and Szöllősi, J. 2004. Cytometry of fluorescence resonance energy transfer. Methods Cell Biol. 75:105‐152.
   Waharte, F., Spriet, C., and Heliot, L. 2006. Setup and characterization of a multiphoton FLIM instrument for protein‐protein interaction measurements in living cells. Cytometry A. 69:299‐306.
   Wallrabe, H. and Periasamy, A. 2005. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16:19‐27.
   Wolber, P.K. and Hudson, B.S. 1979. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28:197‐210.
   Wolf, D.E., Winiski, A.P., Ting, A.E., Bocian, K.M., and Pagano, R.E. 1992. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer. Biochemistry 31:2865‐2873.
   Wu, P. and Brand, L. 1994. Resonance energy transfer: Methods and applications. Anal. Biochem. 218:1‐13.
   Wu, X., Simone, J., Hewgill, D., Siegel, R., Lipsky, P.E., and He, L. 2006. Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry A 69:477‐486.
   Xu, Y., Piston, D.W., and Johnson, C.H. 1999. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U.S.A. 96:151‐156.
   Yamazaki, I., Tamai, N., and Yamazaki, T. 1990. Electronic excitation transfer in organized molecular assemblies. J. Phys. Chem. 94:516‐525.
   Zimmermann, T. 2005. Spectral imaging and linear unmixing in light microscopy. Adv. Biochem. Eng. Biotechnol. 95:245‐265.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library