Fundamentals of Acoustic Cytometry

Michael Ward1, Patrick Turner2, Marc DeJohn3, Gregory Kaduchak1

1 Life Technologies, Eugene, Oregon, 2 Los Alamos Technical Services, Los Alamos, New Mexico, 3 Santa Fe Technical Services, Santa Fe, New Mexico
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 1.22
DOI:  10.1002/0471142956.cy0122s49
Online Posting Date:  July, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Acoustic cytometry is a new technology that replaces or partly replaces hydrodynamic focusing of cells or particles with focusing derived from acoustic radiation pressure forces. It offers new possibilities for improving current flow cytometry assays and creating new ones. To take full advantage of these possibilities, it is necessary to understand the fundamental benefits and limitations of acoustic focusing as employed in flow cytometry analysis, either as a substitute for hydrodynamic focusing or in combination with it. Curr. Protoc. Cytom. 49:1.22.1‐1.22.12. © 2009 by John Wiley & Sons, Inc.

Keywords: flow cytometry; acoustic focusing; sample preparation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • The Acoustic Cytometer
  • Acoustic Force on Particles in a Medium
  • The Acoustic Concentration Effect
  • Summary and Outlook
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Coakley, W.T., Bardsley, D.W., Grundy, M.A., Zamani, F., and Clarke, D.J. 1989. Cell manipulation in ultrasonic standing wave fields. J. Chem. Tech. Biotechnol. 44:43‐62.
   Coakley, W.T., Hawkes, J.J., Sobanski, M.A., Cousins, C.M., and Spengler, J. 2000. Analytical scale ultrasonic standing wave manipulation of cells and microparticles. Ultrasonics 38:638‐641.
   Condrau, M.A., Schwendener, R.A., Zimmermann, M., Muser, M.H., Graf, U., Niederer, P., and Anliker, M. 1994. Time‐resolved flow cytometry for the measurement of lanthanide chelate fluorescence. II: Instrument design and experimental results. Cytometry 16:195‐205.
   Curtis, H.W. and Stephans, E.J. 1982. Ultrasonic continuous flow plasmapheresis separator. IBM Technical Disclosure Bulletin, Vol. 25, No.1.
   Doornbos, R.M.P., de Grooth, B.G., and Greve, J. 1997. Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry. Cytometry 29:204‐214.
   Goddard, G. and Kaduchak, G. 2005. Ultrasonic particle concentration in a line‐driven cylindrical tube. J. Acoust. Soc. Am. 117:3440‐3447.
   Goddard, G., Martin, J.C., Graves, S.W., and Kaduchak, G., 2006. Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry 69:66‐74.
   Goddard, G.R., Sanders, C.K., Martin, J.C., Kaduchak, G., and Graves, S.W. 2007. Analytical performance of an ultrasonic particle focusing flow cytometer. Anal. Chem. 79:8740‐8746.
   Gorkov, L.P. 1962. Forces acting on a small particle in an acoustic field within an ideal fluid. Sov. Physics‐Doklady 6:773‐775.
   Habbersett, R.C. and Jett, J.J. 2004. An analytical system based on a compact cytometer for DNA fragment sizing and single molecule detection. Cytometry 60:125‐134.
   Jin, D., Connally, R., and Piper, J. 2007. Practical time‐gated luminescence flow cytometry. II: Experimental evaluation using UV LED excitation. Cytometry 71:797‐808.
   Jönsson, H., Nilsson, A., Petersson, F., Allers, M., and Laurell, T. 2005. Particle separation using ultrasound can be used with human shed mediastinal blood. Perfusion 20:39‐43.
   Kaduchak, G., Goddard, G., Salzman, G., Sinha, D., Martin, J. C., Kwiatkowski, C.S., and Graves, S.W. 2008. Ultrasonic Particle Concentration and Application in Flow Cytometry. U.S. Patent 7,340,957.
   Kundt, A. and Lehmann, O. 1874. Longitudinal vibrations and acoustic figures in cylindrical columns of liquids. Annalen der Physik und Chemie (Poggendorff's Annalen). 153:1‐11.
   Leif, R.C., Clay, S.P., Graizner, H.G., Haines, H.G., and Vallarino, L.M. 1976. Markers for instrumental evaluation of cells of the female reproductive tract: Existing and new markers. In The Automation of Uterine Cancer Cytology. Tutorials of Cytology (G.L. Wied, G.F. Babr, and P.H. Bartels, eds.). pp. 313‐344. University of Chicago, Chicago.
   Roos, M.S. and Apfel, R.E. 1988. Application of 30‐MHz acoustic scattering to the study of human red blood cells. J. Acoust. Soc. Am. 83:1639‐1644.
   Steen, H.B. 1992. Noise, sensitivity and resolution of flow cytometers. Cytometry 13:822‐830.
   Steen, H.B. 1999. Flow cytometers for characterization of microorganisms. Curr. Protoc. Cytom. 7:1.11.1‐1.11.9.
   van den Engh, G. 2000. High speed cell sorting. In Emerging Tools for Single‐Cell Analysis: Advances in Optical Measurement Technologies. pp. 21‐48. (G. Durack and J.P. Robinson, eds.) John Wiley and Sons, New York.
   Yasuda, K., Haupt, S.S., and Unemura, S. 1997. Using acoustic radiation force as a concentration method for erythrocytes. J. Acoust. Soc. Am. 102:642‐645.
PDF or HTML at Wiley Online Library