Spectral Flow Cytometry

John P. Nolan1, Danilo Condello1

1 La Jolla Bioengineering Institute, San Diego, California
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 1.27
DOI:  10.1002/0471142956.cy0127s63
Online Posting Date:  January, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Interest in measuring the complete fluorescence spectra of individual cells in flow can be traced to the earliest days of flow cytometry. Recent advances in detectors, optics, and computation have made it possible to make full spectral measurements in the sub‐millisecond time frame in which flow cytometry measurements typically occur. This opens up new possibilities for applying spectroscopy to the analysis of individual cells. This unit reviews historical and contemporary approaches to spectral flow cytometry, as well as instrument design, calibration, and data analysis for spectral flow cytometry applications. Curr. Protoc. Cytom. 63:1.27.1‐1.27.13. © 2013 by John Wiley & Sons, Inc.

Keywords: spectral flow cytometry; fluorescence; SERS; surface enhanced Raman scattering; CCD; spectrograph

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • History
  • General Considerations
  • Instrument Design
  • Experiment Design and Data Analysis
  • Examples and Biological Applications
  • Summary and Prospects
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Alberti, S., Parks, D.R., and Herzenberg, L.A. 1987. A single laser method for subtraction of cell autofluorescence in flow cytometry. Cytometry 8:114‐119.
   Asbury, C.L., Esposito, R., Farmer, C., and van den Engh, G. 1996. Fluorescence spectra of DNA dyes measured in a flow cytometer. Cytometry 24:234‐242.
   Buican, T.N. 1990. Real‐time Fourier transform spectrometry for fluorescence imaging and flow cytometry. Proc. SPIE 1205:126‐133.
   Chase, E.S. and Hoffman, R.A. 1998. Resolution of dimly fluorescent particles: A practical measure of fluorescence sensitivity. Cytometry 33:267‐279.
   Clutter, M.R., Heffner, G.C., Krutzik, P.O., Sachen, K.L., and Nolan, G.P. 2010. Tyramide signal amplification for analysis of kinase activity by intracellular flow cytometry. Cytometry A 77:1020‐1031.
   Dubelaar, G.B.J., Gerritzen, P.L., Beeker, A.E.R., Jonker, R.R., and Tangen, K. 1999. Design and first results of CytoBuoy: A wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37:247‐254.
   Duponchel, L., Elmi‐Rayaleh, W., Ruckebusch, C., and Huvenne, J.P. 2003. Multivariate curve resolution methods in imaging spectroscopy:? Influence of extraction methods and instrumental perturbations. J. Chem. Inform. Comp. Sci. 43:2057‐2067.
   Fuller, R.R. and Sweedler, J.V. 1996. Characterizing submicron vesicles with wavelength‐resolved fluorescence in flow cytometry. Cytometry 25:144‐155.
   Garini, Y., Young, I.T., and McNamara, G. 2006. Spectral imaging: Principles and applications. Cytometry A 69A:735‐747.
   Gauci, M., Vesey, G., Narai, J., Veal, D., Williams, K.L., and Piper, J.A. 1996. Observation of single‐cell fluorescence spectra in laser flow cytometry. Cytometry 25:388‐393.
   Goddard, G., Martin, J.C., Naivar, M., Goodwin, P.M., Graves, S.W., Habbersett, R., Nolan, J.P., and Jett, J.H. 2006. Single particle high resolution spectral analysis flow cytometry. Cytometry A 69:842‐851.
   Goddard, G.R., Houston, J., Martin, J.C., Graves, S.W., and Freyer, J.P. 2008. Cellular discrimination based on spectral analysis of instrinic fluorescence. In Proc. SPIE 6859, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, 685908 (February 28, 2008); doi:10.1117/12.763873.
   Grégori, G., Patsekin, V., Rajwa, B., Jones, J., Ragheb, K., Holdman, C., and Robinson, J.P. 2011. Hyperspectral cytometry at the single‐cell level using a 32‐channel photodetector. Cytometry A 81A:35‐44.
   Hadrup, S.R., Bakker, A.H., Shu, C.J., Andersen, R.S., van Veluw, J., Hombrink, P., Castermans, E., Thor Straten, P., Blank, C., Haanen, J.B., Heemskerk, M.H., and Schumacher, T.N. 2009. Parallel detection of antigen‐specific T‐cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6:520‐526.
   Hoffman, R.A., Wang, L., Bigos, M., and Nolan, J.P. 2012. NIST/ISAC standardization study: Variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Cytometry A 81:785‐796.
   Isailovic, D., Li, H.W., Phillips, G.J., and Yeung, E.S. 2005. High‐throughput single‐cell fluorescence spectroscopy. Appl. Spectroscopy 59:221‐226.
   Krutzik, P.O. and Nolan, G.P. 2006. Fluorescent cell barcoding in flow cytometry allows high‐throughput drug screening and signaling profiling. Nat. Methods 3:361‐368.
   Lerner, J.M., 2006. Imaging spectrometer fundamentals for researchers in the biosciences—a tutorial. Cytometry A 69:712‐734.
   Maecker, H.T. and Trotter, J. 2006. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037‐1042.
   Marrone, B.L., Simpson, D.J., Yoshida, T.M., Unkefer, C.J., Whaley, T.W., and Buican, T.N. 1991. Single cell endocrinology: Analysis of P‐450scc activity by fluorescence detection methods. Endocrinology 128:2654‐2656.
   Newell, E.W., Klein, L.O., Yu, W., and Davis, M.M. 2009. Simultaneous detection of many T‐cell specificities using combinatorial tetramer staining. Nat. Methods 6:497‐499.
   Nolan, J.P. and Sklar, L.A. 2002. Suspension array technology: Evolution of the flat‐array paradigm. Trends Biotechnol. 20:9‐12.
   Nolan, J.P. and Mandy, F. 2006. Multiplexed and microparticle based analyses: Quantitative tools for the large scale analysis of biological systems. Cytometry A 69:318‐325.
   Nolan, J.P. and Sebba, D.S. 2011. Surface‐enhanced Raman scattering (SERS) cytometry. In Methods in Cell Biology (M. Paul, ed.) pp. 515‐532. Academic Press, New York.
   Nolan, J.P., Condello, D., Duggen, E., and Naivar, M. 2012a. Visible and NIR fluorescence spectral flow cytometry. Cytometry A, In press.
   Nolan, J.P., Duggan, E., Liu, E., Condello, D., Dave, I., and Stoner, S.A. 2012b. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57:272‐279.
   Ringner, M. 2008. What is principal component analysis? Nat. Biotechnol. 26:303‐304.
   Robinson, J., Patsekin, V., Gregori, G., Rajwa, B., and Jones, J. 2005. Multispectral flow cytometry: Next generation tools for automated classification. Microsc. Microanal. 11:2‐3.
   Roederer, M. and Murphy, R.F. 1986. Cell‐by‐cell autofluorescence correction for low signal‐to‐noise systems: Application to epidermal growth factor endocytosis by 3T3 fibroblasts. Cytometry 7:558‐565.
   Saunders, M.J., Graves, S.W., Sklar, L.A., Oprea, T.I., and Edwards, B.S. 2010. High‐throughput multiplex flow cytometry screening for botulinum neurotoxin type A light chain protease inhibitors. Assay Drug Devel. Technol. 8:37‐46.
   Sebba, D.S., Watson, D.A., and Nolan, J.P. 2009. High throughput single nanoparticle spectroscopy. ACS Nano 3:1477‐1484.
   Simons, P.C., Young, S.M., Carter, M.B., Waller, A., Zhai, D., Reed, J.C., Edwards, B.S., and Sklar, L.A. 2011. Simultaneous in vitro molecular screening of protein‐peptide interactions by flow cytometry, using six Bcl‐2 family proteins as examples. Nat. Protoc. 6:943‐952.
   Steen, H.B. and Stokke, T. 1986. Fluorescence spectra of cells stained with a DNA‐specific dye, measured by flow cytometry. Cytometry 7:104‐106.
   Steinkamp, J.A. and Stewart, C.C. 1986. Dual‐laser, differential fluorescence correction method for reducing cellular background autofluorescence. Cytometry 7:566‐574.
   Tauler, R. 1995. Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. Syst. 30:133‐146.
   Tauler, R., Kowalski, B., and Fleming, S. 1993. Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal. Chem. 65:2040‐2047.
   Tauler, R., Smilde, A., and Kowalski, B. 1995. Selectivity, local rank, three‐way data analysis and ambiguity in multivariate curve resolution. J. Chemometrics 9:31‐58.
   Timlin, J.A., Haaland, D.M., Sinclair, M.B., Aragon, A.D., Martinez, M.J., and Werner‐Washburne, M. 2005. Hyperspectral microarray scanning: Impact on the accuracy and reliability of gene expression data. BMC Genomics 6:72.
   Wade, C., Rhyne, R., Woodruff, W., Bloch, D., and Bartholomew, J. 1979. Spectra of cells in flow cytometry using a vidicon detector. J. Histochem. Cytochem. 27:1049.
   Watson, D.A., Brown, L.O., Gaskill, D.F., Naivar, M., Graves, S.W., Doorn, S.K., and Nolan, J.P. 2008. A flow cytometer for the measurement of Raman spectra. Cytometry A 73:119‐128.
   Watson, D.A., Gaskill, D.F., Brown, L.O., Doorn, S.K., and Nolan, J.P. 2009. Spectral measurements of large particles by flow cytometry. Cytometry A 75:460‐464.
   Wood, J.C.S. and Hoffman, R.A. 1998. Evaluating fluorescence sensitivity on flow cytometers: An overview. Cytometry 33:256‐259.
   Xu, H. and Rice, B.W. 2009. In‐vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J. Biomed. Optics 14:064011‐9.
   Young, S.M., Bologa, C.M., Fara, D., Bryant, B.K., Strouse, J.J., Arterburn, J.B., Ye, R.D., Oprea, T.I., Prossnitz, E.R., Sklar, L.A., and Edwards, B.S. 2009. Duplex high‐throughput flow cytometry screen identifies two novel formylpeptide receptor family probes. Cytometry A 75:253‐263.
   Zenger, V.E., Vogt, R., Mandy, F., Schwartz, A., and Marti, G.E. 1998. Quantitative flow cytometry: Inter‐laboratory variation. Cytometry 33:138‐145.
PDF or HTML at Wiley Online Library