Calibration: Sampling Density and Spatial Resolution

Ian T. Young1

1 Delft University of Technology, Delft, The Netherlands
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 2.6
DOI:  10.1002/0471142956.cy0206s05
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit presents a discussion of procedures for measuring the sampling density and spatial resolution of a quantitative microscope system. These two independent quantities are fundamental characteristics of a system that must be known for proper processing and interpretation of digitized microscope images and of measurements extracted from such images.

PDF or HTML at Wiley Online Library

Table of Contents

  • Relating Sampling Density and Spatial Resolution
  • Determining Sampling Density
  • Determining the Spatial Resolution
  • Conclusions
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Born, M. and Wolf, E. 1980. Principles of Optics, 6th ed. Pergamon Press, Oxford, U.K.
   Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8:679‐698.
   Castleman, K.R. 1996. Digital Image Processing, 2nd ed. Prentice‐Hall, Englewood Cliffs, N.J.
   Holmes, T.J. 1992. Blind deconvolution of quantum‐limited incoherent imagery: Maximum‐likelihood approach. J. Opt. Soc. Amer. A‐9:1052‐1061.
   Holmes, T.J. and Liu, Y.‐H. 1991. Acceleration of maximum‐likelihood image restoration for fluorescence microscopy and other incoherent imagery. J. Opt. Soc. Amer. A‐8:893‐907.
   Holmes, T.J., Bhattacharyya, S., Cooper, J.A., Hanzel, D., Krishnamurti, V., Lin, W.C., Roysam, B., Szarowski, D.H., and Turner, J.N. 1995. Light microscopic images reconstructed by maximum‐likelihood deconvolution. In Handbook of Confocal Microscopy (J.B. Pawley, ed.) pp. 389‐402. Plenum Press, New York.
   Limansky, I. 1968. Electronics Eng., pp. 50‐55.
   O'Neill, E.L. 1963. Introduction to Statistical Optics. Addison‐Wesley, Reading, Mass.
   Oppenheim, A.V., Willsky, A.S., and Young, I.T. 1983. Systems and Signals. Prentice‐Hall, Englewood Cliffs, N.J.
   Press, W.H., Flannery, B.P., Teukolsky, S.A., and Veterling, W.T. 1988. Numerical Recipes in C. Cambridge University Press, Cambridge, U.K.
   van den Voort, H.T.M. and Strasters, K.C. 1995. Restoration of confocal images for quantitative image analysis. J. Microsc. 178:165‐181.
   van Kempen, G.M.P., van den Voort, H.T.M., Bauman, J.G.J., and Strasters, K.C. 1996. Comparing maximum likelihood estimation and constrained Tikhonov‐Miller restoration. IEEE Eng. Med. Biol. 15:76‐83.
   van Vliet, L.J. 1993. Grey‐Scale Measurements in Multi‐Dimensional Digitized Images. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
   Wolfram, S. 1991. Mathematica: A System for Doing Mathematics by Computer, 2nd ed. Addison Wesley, Redwood City, Calif.
   Young, I.T. 1989. Image fidelity: Characterizing the imaging transfer function. Methods Cell Biol. 30:1‐45.
   Young, I.T. 1996. Quantitative microscopy. IEEE Eng. Med. Biol. 15:59‐66.
   Young, I.T. and van Vliet, L.J. 1995. Recursive implementation of the Gaussian filter. Signal Processing 44:139‐151.
   Young, I.T., Balasubramanian, Dunbar, D.L., Peverini, R.L., and Bishop, R.P. 1982. SSAM: Solid‐state automated microscope. IEEE Trans. Biomed. Eng. 29:70‐82.
PDF or HTML at Wiley Online Library