Measurement of Molecular Mobility with Fluorescence Correlation Spectroscopy

György Vámosi1, Sándor Damjanovich1, János Szöllősi2, György Vereb2

1 Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, 2 Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 2.15
DOI:  10.1002/0471142956.cy0215s50
Online Posting Date:  October, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Fluorescence correlation spectroscopy (FCS) is a fluctuation method established three decades ago, whose application to cellular systems became popular in the last decade. Fluctuations of fluorescence emission are observed from a small, femtoliter to sub‐femtoliter, usually confocal volume at high time resolution. A time‐dependent autocorrelation function is generated and evaluated to obtain time constants of photophysical and photochemical reactions, as well as of molecular diffusion and in the observation volume. Molecules in various subcellular compartments—including the nucleus, the cytoplasm, and the membrane—can be observed after labeling them with antibodies, ligands, or fluorescent proteins. The anomaly of diffusion, the local concentration, and the average fluorescence per diffusing particle can also be determined, all of which can be characteristic of molecular interactions. A two‐color version of FCS, fluorescence cross‐correlation spectroscopy, can also be applied to observe co‐diffusion, i.e., stable association of two distinct molecular species in their cellular environment. Curr. Protoc. Cytom. 50:2.15.1‐2.15.19. © 2009 by John Wiley & Sons, Inc.

Keywords: fluorescence correlation spectroscopy; FCS; fluorescence cross‐correlation spectroscopy; FCCS; diffusion; co‐diffusion; molecular mobility; cellular FCS measurements

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Principles of Fluorescence Correlation Spectroscopy
  • Equipment and Materials
  • Procedure
  • Application to Cellular Systems
  • Pitfalls and Troubleshooting
  • Anticipated Results
  • Alternatives to Classical FCS Analysis
  • Time Considerations
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Bacia, K., Kim, S.A., and Schwille, P. 2006. Fluorescence cross‐correlation spectroscopy in living cells. Nat. Methods 3:83‐89.
   Baudendistel, N., Muller, G., Waldeck, W., Angel, P., and Langowski, J. 2005. Two‐hybrid fluorescence cross‐correlation spectroscopy detects protein‐protein interactions in vivo. Chemphyschem 6:984‐990.
   Brock, R., Vámosi, G., Vereb, G., and Jovin, T.M. 1999. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. U.S.A. 96:10123‐10128.
   Chen, Y., Muller, J.D., So, P.T., and Gratton, E. 1999. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77:553‐567.
   Chen, Y., Muller, J.D., Ruan, Q., and Gratton, E. 2002. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J. 82:133‐144.
   Dertinger, T., Pacheco, V., von der Hocht, I., Hartmann, R., Gregor, I., and Enderlein, J. 2007. Two‐focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433‐443.
   Dickson, R.M., Cubitt, A.B., Tsien, R.Y., and Moerner, W.E. 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355‐358.
   Dross, N., Spriet, C., Zwerger, M., Müller, G., Waldeck, W., and Langowski, J. 2009. Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4:e5041. Epub 2009 Apr 4.
   Ehrenberg, M., and Rigler, R. 1976. Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q. Rev. Biophys. 9:69‐81.
   Elson, E.L. 2004. Quick tour of fluorescence correlation spectroscopy from its inception. J. Biomed. Opt. 9:857‐864.
   Garcia‐Parajo, M.F., Segers‐Nolten, G.M., Veerman, J.A., Greve, J., and van Hulst, N.F. 2000. Real‐time light‐driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc. Natl. Acad. Sci. U.S.A. 97:7237‐7242.
   Haupts, U., Maiti, S., Schwille, P., and Webb, W.W. 1998. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95:13573‐13578.
   Humpolickova, J., Gielen, E., Benda, A., Fagulova, V., Vercammen, J., Vandeven, M., Hof, M., Ameloot, M., and Engelborghs, Y. 2006. Probing diffusion laws within cellular membranes by Z‐scan fluorescence correlation spectroscopy. Biophys. J. 91:L23‐L25.
   Kim, S.A., Heinze, K.G., and Schwille, P. 2007. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4:963‐973.
   Kohl, T., Haustein, E., and Schwille, P. 2005. Determining protease activity in vivo by fluorescence cross‐correlation analysis. Biophys. J. 89:2770‐2782.
   Koppel, D. 1974. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10:1938‐1945.
   Larson, D.R., Gosse, J.A., Holowka, D.A., Baird, B.A., and Webb, W.W. 2005. Temporally resolved interactions between antigen‐stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171:527‐536.
   Loman, A., Dertinger, T., Koberling, F., and Enderlein, J. 2008. Comparison of optical saturation effects in conventional and dual‐focus fluorescence correlation spectroscopy. Chem. Phys. Lett. 459:18‐21.
   Magde, D., Elson, E.L., and Webb, W.W. 1974. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29‐61.
   Modos, K., Galantai, R., Bardos‐Nagy, I., Wachsmuth, M., Toth, K., Fidy, J., and Langowski, J. 2004. Maximum‐entropy decomposition of fluorescence correlation spectroscopy data: Application to liposome‐human serum albumin association. Eur. Biophys. J. 33:59‐67.
   Nagy, A., Wu, J., and Berland, K.M. 2005. Characterizing observation volumes and the role of excitation saturation in one‐photon fluorescence fluctuation spectroscopy. J. Biomed. Opt. 10:44015.
   Ohsugi, Y., Saito, K., Tamura, M., and Kinjo, M. 2006. Lateral mobility of membrane‐binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys. J. 91:3456‐3464.
   Petrasek, Z. and Schwille, P. 2008. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94:1437‐1448.
   Politz, J.C., Tuft, R.A., Prasanth, K.V., Baudendistel, N., Fogarty, K.E., Lifshitz, L.M., Langowski, J., Spector, D.L., and Pederson, T. 2006. Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm. Mol. Biol. Cell 17:1239‐1249.
   Pramanik, A. and Rigler, R. 2001. Ligand‐receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem. 382:371‐378.
   Saxton, M.J. 1994. Anomalous diffusion due to obstacles: A Monte Carlo study. Biophys. J. 66:394‐401.
   Schwille, P., Bieschke, J., and Oehlenschlager, F. 1997a. Kinetic investigations by fluorescence correlation spectroscopy: The analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66:211‐228.
   Schwille, P., Meyer‐Almes, F.J., and Rigler, R. 1997b. Dual‐color fluorescence cross‐correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72:1878‐1886.
   Schwille, P., Haupts, U., Maiti, S., and Webb, W.W. 1999. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one‐ and two‐photon excitation. Biophys. J. 77:2251‐2265.
   Stoevesandt, O., Kohler, K., Fischer, R., Johnston, I.C., and Brock, R. 2005. One‐step analysis of protein complexes in microliters of cell lysate. Nat. Methods 2:833‐835.
   Takahashi, Y., Okamoto, Y., Popiel, H.A., Fujikake, N., Toda, T., Kinjo, M., and Nagai, Y. 2007. Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J. Biol. Chem. 282:24039‐24048.
   Thews, E., Gerken, M., Eckert, R., Zapfel, J., Tietz, C., and Wrachtrup, J. 2005. Cross talk free fluorescence cross correlation spectroscopy in live cells. Biophys. J. 89:2069‐2076.
   Thompson, N.L., and Steele, B.L. 2007. Total internal reflection with fluorescence correlation spectroscopy. Nat. Protoc. 2:878‐890.
   Vámosi, G., Bodnár, A., Vereb, G., Jenei, A., Goldman, C.K., Langowski, J., Tóth, K., Mátyus, L., Szöllösi, J., Waldmann, T.A., and Damjanovich, S. 2004. IL‐2 and IL‐15 receptor alpha‐subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc. Natl. Acad. Sci. U.S.A. 101:11082‐11087.
   Vámosi, G., Baudendistel, N., von der Lieth, C.W., Szalóki, N., Mocsár, G., Müller, G., Brázda, P., Waldeck, W., Damjanovich, S., Langowski, J., and Tóth, K. 2008. Conformation of the c‐Fos/c‐Jun complex in vivo: A combined FRET, FCCS, and MD‐modeling study. Biophys. J. 94:2859‐2868.
   van den Berg, P.A., Widengren, J., Hink, M.A., Rigler, R., and Visser, A.J. 2001. Fluorescence correlation spectroscopy of flavins and flavoenzymes: Photochemical and photophysical aspects. Spectrochim. Acta A 57:2135‐2144.
   Vereb, G., Szöllősi, J., Matko, J., Nagy, P., Farkas, T., Vigh, L., Matyus, L., Waldmann, T.A., and Damjanovich, S. 2003. Dynamic, yet structured: The cell membrane three decades after the Singer‐Nicolson model. Proc. Natl. Acad. Sci. U.S.A. 100:8053‐8058.
   Vereb, G., Matko, J., and Szollosi, J. 2004. Cytometry of fluorescence resonance energy transfer. Methods Cell Biol. 75:105‐152.
   Wachsmuth, M., Waldeck, W., and Langowski, J. 2000. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially‐resolved fluorescence correlation spectroscopy. J. Mol. Biol. 298:677‐689.
   Wawrezinieck, L., Rigneault, H., Marguet, D., and Lenne, P.F. 2005. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89:4029‐4042.
   Weiss, M., Hashimoto, H., and Nilsson, T. 2003. Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84:4043‐4052.
   Widengren, J., Mets, U., and Rigler, R. 1995. Fluorescence correlation spectroscopy of triplet states in solution: A theoretical and experimental study. J. Phys. Chem. 99:13368‐13379.
   Widengren, J. and Rigler, R. 1996. Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4:149‐157.
   Widengren, J. and Rigler, R. 1998. Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol. (Noisy‐le‐grand) 44:857‐879.
   Widengren, J. and Thyberg, P. 2005. FCS cell surface measurements—Photophysical limitations and consequences on molecular ensembles with heterogenic mobilities. Cytometry A 68:101‐112.
   Yeung, C., Shtrahman, M., and Wu, X.L. 2007. Stick‐and‐diffuse and caged diffusion: A comparison of two models of synaptic vesicle dynamics. Biophys. J. 92:2271‐2280.
PDF or HTML at Wiley Online Library