Super‐Resolution Microscopy: A Comparative Treatment

James M. Kasuboski1, Yury J. Sigal1, Matthew S. Joens1, Bjorn F. Lillemeier2, James A.J. Fitzpatrick1

1 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, 2 Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 2.17
DOI:  10.1002/0471142956.cy0217s62
Online Posting Date:  October, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

One of the fundamental limitations of optical microscopy is that of diffraction, or in essence, how small a beam of light can be focused by using an optical lens system. This constraint, or barrier if you will, was theoretically described by Ernst Abbe in 1873 and is roughly equal to half the wavelength of light used to probe the system. Many structures, particularly those within cells, are much smaller than this limit and thus are difficult to visualize. Over the last two decades, a new field of super‐resolution imaging has been created and been developed into a broad range of techniques that allow routine imaging beyond the far‐field diffraction limit of light. In this unit we outline the basic principles of the various super‐resolution imaging modalities, paying particular attention to the technical considerations for biological imaging. Furthermore, we discuss their various applications in the imaging of both fixed and live biological samples. Curr. Protoc. Cytom. 62:2.17.1‐2.17.24. © 2012 by John Wiley & Sons, Inc.

Keywords: super‐resolution microscopy; PALM (photoactivation localization microscopy); STORM (stochastic optical reconstruction microscopy); SIM (structured illumination microscopy); STED (stimulated emission depletion microscopy); GSD (ground state depletion); 4Pi microscopy

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Super‐Resolution Imaging Methodologies
  • Point‐Spread Function Engineering
  • Concluding Remarks
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abbe, E. 1873. Beitrage zur theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arkiv. Mikroskop. Anat. 9:413‐468.
   Adam, V., Lelimousin, M., Boehme, S., Desfonds, G., Nienhaus, K., Field, M.J., Wiedenmann, J., McSweeney, S., Nienhaus, G.U., and Bourgeois, D. 2008. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo‐induced transformations. Proc. Natl. Acad. Sci. U.S.A. 105:183434‐18348.
   Ando, R., Flors, C., Mizuno, H., Hofkens, J., and Miyawaki, A. 2007. Highlighted generation of fluorescence signals using simultaneous two‐color irradiation on Dronpa mutants. Biophys. J. 92:L97‐L99.
   Andresen, M., Stiel, A.C., Fölling, J., Wenzel, D., Schönle, A., Egner, A., Eggeling, C., Hell, S.W., and Jakobs, S. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26:1035‐1040.
   Bailey, B. 1994. Three‐dimensional imaging of biological specimens with standing wave fluorescence microscopy. Proc. SPIE 2184:208‐213.
   Bates, M., Huang, B., Dempsey, G.T., and Zhuang, X. 2007. Multicolor super‐resolution imaging with photo‐switchable fluorescent probes. Science 317:1749‐1753.
   Berning, S., Willig, K.I., Steffens, H., Dibaj, P., and Hell, S.W. 2012. Nanoscopy in a living mouse brain. Science 335:551.
   Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott‐Schwartz, J., and Hess, H.F. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642‐1645.
   Biteen, J.S., Thompson, M.A., Tselentis, N.K., Bowman, G.R., Shapiro, L., and Moerner, W.E. 2008. Super‐resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5:947‐949.
   Biteen, J.S., Goley, E.D., Shapiro, L., and Moerner, W.E. 2012. Three‐dimensional super‐resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. Chemphyschem 13:1007‐1012.
   Boyarskiy, V.P., Belov, V.N., Medda, R., Hein, B., Bossi, M., and Hell, S.W. 2008. Photostable, amino reactive and water‐soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry 14:1784‐1792.
   Buckers, J., Wildanger, D., Vicidomini, G., Kastrup, L., and Hell, S.W. 2011. Simultaneous multi‐lifetime multi‐color STED imaging for colocalization analyses. Optics Expr. 19:3130‐43.
   Chatel, G., Desai, S.H., Mattheyses, A.L., Powers, M.A., and Fahrenkrog, B. 2012. Domain topology of nucleoporin Nup98 within the nuclear pore complex. J. Struct. Biol. 177:81‐89.
   Chirico, G., Cannone, F., Diaspro, A., Bologna, S., Pellegrini, V., Nifosì, R., and Beltram, F. 2004. Multiphoton switching dynamics of single green fluorescent proteins. Phys. Rev. E 70:030901.
   Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., and Lukyanov, K.A. 2003. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21:191‐194.
   Chudakov, D.M., Verkhusha, V.V., Staroverov, D.B., Souslova, E.A., Lukyanov, S., and Lukyanov, K.A. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22:1435‐1439.
   Conley, N.R., Biteen, J.S., and Moerner, W.E. 2008. Cy3‐Cy5 covalent heterodimers for single‐molecule photoswitching. J. Phys. Chem. B 112:11878‐11880.
   Dani, A., Huang, B., Bergan, J., Dulac, C., and Zhuang, X. 2010. Superresolution imaging of chemical synapses in the brain. Neuron 68:843‐856.
   Dertinger, T., Colyer, R., Iyer, G., Weiss, S., and Enderlein, J. 2009. Fast, background‐free, 3D super‐resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. U.S.A. 106:22287‐22292.
   Donnert, G., Keller, J., Medda, R., Andrei, M.A., Rizzoli, S.O., Lührmann, R., Jahn, R., Eggeling, C., and Hell, S.W. 2006. Macromolecular‐scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 103:11440‐11445.
   Donnert, G., Keller, J., Wurm, C.A., Rizzoli, S.O., Westphal, V., Schönle, A., Jahn, R., Jakobs, S., Eggeling, C., and Hell, S.W. 2007. Two‐color far‐field fluorescence nanoscopy. Biophys. J. 92:L67‐L69.
   Dyba, M. and Hell, S.W. 2002. Focal spots of size lambda/23 open up far‐field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88:163901.
   Dyba, M. and Hell, S.W. 2003. Photostability of a fluorescent marker under pulsed excited‐state depletion through stimulated emission. Appl. Optics 42:5123‐5129.
   Egner, A., Schrader, M., and Hell, S.W. 1998. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi‐microscopy. Optics Comm. 153:211‐217.
   Egner, A., Geisler, C., von Middendorff, C., Bock, H., Wenzel, D., Medda, R., Andresen, M., Stiel, A.C., Jakobs, S., Eggeling, C., Schönle, A., and Hell, S.W. 2007. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93:3285‐3290.
   Elia, N., Sougrat, R., Spurlin, T.A., Hurley, J.H., and Lippincott‐Schwartz, J. 2011. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl. Acad. Sci. U.S.A. 108:4846‐4851.
   Fiolka, R., Shao, L., Rego, E.H., Davidson, M.W., and Gustafsson, M.G. 2012. Time‐lapse two‐color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. U.S.A 109:5311‐5315.
   Fitzgibbon, J., Bell, K., King, E., and Oparka, K. 2010. Super‐resolution imaging of plasmodesmata using three‐dimensional structured illumination microscopy. Plant Physiol. 153:1453‐1463.
   Fitzpatrick, J.A., Yan, Q., Sieber, J.J., Dyba, M., Schwarz, U., Szent‐Gyorgyi, C., Woolford, C.A., Berget, P.B., Waggoner, A.S., and Bruchez, M.P. 2009. STED nanoscopy in living cells using fluorogen activating proteins. Bioconjugate Chem. 20:1843‐1847.
   Fleming, T.C., Shin, J.Y., Lee, S.H., Becker, E., Huang, K.C., Bustamante, C., and Pogliano, K. 2010. Dynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation. Genes Devel. 24:1160‐1172.
   Folling, J., Bossi, M., Bock, H., Medda, R., Wurm, C.A., Hein, B., Jakobs, S., Eggeling, C., and Hell, S.W. 2008. Fluorescence nanoscopy by ground‐state depletion and single‐molecule return. Nat. Methods 5:943‐945.
   Fu, G., Huang, T., Buss, J., Coltharp, C., Hensel, Z., and Xiao, J. 2010. In vivo structure of the E. coli FtsZ‐ring revealed by photoactivated localization microscopy (PALM). PloS One 5:e12682.
   Gelles, J., Schnapp, B.J., and Sheetz, M.P. 1988. Tracking kinesin‐driven movements with nanometre‐scale precision. Nature 331:450‐453.
   Gould, T.J., Myers, J.R., and Bewersdorf, J., 2011. Total internal reflection STED microscopy. Optics Expr. 19:13351‐13357.
   Greenfield, D., McEvoy, A.L., Shroff, H., Crooks, G.E., Wingreen, N.S., Betzig, E., and Liphardt, J. 2009. Self‐organization of the Escherichia coli chemotaxis network imaged with super‐resolution light microscopy. PLoS Biol. 7:e1000137.
   Gu, M. and Sheppard, C.J. 1994. Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy. Appl. Optics 33:625‐630.
   Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, S., and Lukyanov, K.A. 2006. Engineering of a monomeric green‐to‐red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461‐465.
   Gustafsson, M.G. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microscopy 198:82‐87.
   Gustafsson, M.G. 2005. Nonlinear structured‐illumination microscopy: Wide‐field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102:13081‐13086.
   Gustafsson, M.G., Agard, D.A., and Sedat, J.W. 1999. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microscopy 195:10‐26.
   Gustafsson, M.G., Shao, L., Carlton, P.M., Wang, C.J., Golubovskaya, I.N., Cande, W.Z., Agard, D.A., and Sedat, J.W. 2008. Three‐dimensional resolution doubling in wide‐field fluorescence microscopy by structured illumination. Biophysical J. 94:4957‐4970.
   Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., and Hofkens, J. 2005. Reversible single‐molecule photoswitching in the GFP‐like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. U.S.A. 102:9511‐9516.
   Habuchi, S., Tsutsui, H., Kochaniak, A.B., Miyawaki, A., and van Oijen, A.M. 2008. mKikGR, a monomeric photoswitchable fluorescent protein. PloS One 3:e3944.
   Han, K.Y., Kim, S.K., Eggeling, C., and Hell, S.W. 2010. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction‐unlimited resolution. Nano Lett. 10:3199‐3203.
   Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P., and Sauer, M. 2008. Subdiffraction‐resolution fluorescence imaging with conventional fluorescent probes. Angew. Chemie 47:6172‐6176.
   Heilemann, M., van de Linde, S., Mukherjee, A., and Sauer, M. 2009. Super‐resolution imaging with small organic fluorophores. Angew. Chemie 48:6903‐6908.
   Hein, B., Willig, K.I., and Hell, S.W. 2008. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein‐labeled organelle inside a living cell. Proc. Natl. Acad. Sci. U.S.A. 105:14271‐14276.
   Hell, S. and Stelzer, E.H.K. 1992. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9:2159‐2166.
   Hell, S.W. and Wichmann, J. 1994. Breaking the diffraction resolution limit by stimulated emission: Stimulated‐emission‐depletion fluorescence microscopy. Optics Lett. 19:780.
   Hell, S.W., Lindek, S., and Stelzer, E.H.K. 1994a. Enhancing the axial resolution in far‐field light microscopy: Two‐photon 4Pi confocal fluorescence microscopy. J. Modern Optics 41:675‐681.
   Hell, S.W., Stelzer, E.H., Lindek, S., and Cremer, C. 1994b. Confocal microscopy with an increased detection aperture: Type‐B 4Pi confocal microscopy. Optics Lett. 19:222.
   Henderson, J.N., Ai, H.W., Campbell, R.E., and Remington, S.J. 2007. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. U.S.A. 104:6672‐6677.
   Hess, S.T., Girirajan, T.P., and Mason, M.D. 2006. Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical J. 91:4258‐4272.
   Hess, S.T., Gould, T.J., Gudheti, M.V., Maas, S.A., Mills, K.D., and Zimmerberg, J. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. U.S.A. 104:17370‐17375.
   Huang, B., Jones, S.A., Brandenburg, B., and Zhuang, X. 2008a. Whole‐cell 3D STORM reveals interactions between cellular structures with nanometer‐scale resolution. Nat. Methods 5:1047‐1052.
   Huang, B., Wang, W., Bates, M., and Zhuang, X. 2008b. Three‐dimensional super‐resolution imaging by stochastic optical reconstruction microscopy. Science 319:810‐813.
   Irvine, S.E., Staudt, T., Rittweger, E., Engelhardt, J., and Hell, S.W. 2008. Direct light‐driven modulation of luminescence from Mn‐doped ZnSe quantum dots. Angew. Chemie 47:2685‐2688.
   Juette, M.F., Gould, T.J., Lessard, M.D., Mlodzianoski, M.J., Nagpure, B.S., Bennett, B.T., Hess, S.T., and Bewersdorf, J. 2008. Three‐dimensional sub‐100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527‐529.
   Klein, T., Löschberger, A., Proppert, S., Wolter, S., van de Linde, S., and Sauer, M. 2011. Live‐cell dSTORM with SNAP‐tag fusion proteins. Nat. Methods 8:7‐9.
   Kremers, G.J., Hazelwood, K.L., Murphy, C.S., Davidson, M.W., and Piston, D.W. 2009. Photoconversion in orange and red fluorescent proteins. Nat. Methods 6:355‐358.
   Lalkens, B., Testa, I., Willig, K.I., and Hell, S.W. 2011. MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM. Microscopy Res. Techn. 75:1‐6.
   Lang, M.C., Staudt, T., Engelhardt, J., and Hell, S.W. 2008. 4Pi microscopy with negligible sidelobes. N. J. Physics 10:043041.
   Lillemeier, B.F., Mörtelmaier, M.A., Forstner, M.B., Huppa, J.B., Groves, J.T., and Davis, M.M. 2010. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11:90‐96.
   Lippincott‐Schwartz, J. and Patterson, G.H. 2008. Fluorescent proteins for photoactivation experiments. Methods Cell Biol. 85:45‐61.
   Manley, S., Gillette, J.M., Patterson, G.H., Shroff, H., Hess, H.F., Betzig, E., and Lippincott‐Schwartz, J. 2008. High‐density mapping of single‐molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155‐157.
   McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., and Looger, L.L. 2009. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6:131‐133.
   Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S.O., Donnert, G., and Hell, S.W. 2008. Dual‐color STED microscopy at 30‐nm focal‐plane resolution. Small 4:1095‐1100.
   Moffitt, J.R., Osseforth, C., and Michaelis, J. 2011. Time‐gating improves the spatial resolution of STED microscopy. Optics Expr. 19:4242‐4254.
   Moneron, G. and Hell, S.W. 2009. Two‐photon excitation STED microscopy. Optics Expr. 17:14567‐14573.
   Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., and Hell, S.W. 2010. Fast STED microscopy with continuous wave fiber lasers. Optics Expr. 18:1302‐1309.
   Nagerl, U.V., Willig, K.I., Hein, B., Hell, S.W., and Bonhoeffer, T. 2008. Live‐cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U.S.A. 105:18982‐18987.
   Nagorni, M. and Hell, S.W. 2001. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. J. Opt. Soc. Am. A 18:36‐48.
   Patterson, G.H. and Lippincott‐Schwartz, J. 2004. Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445‐450.
   Pellett, P.A., Sun, X., Gould, T.J., Rothman, J.E., Xu, M.Q., Correa, I.R. Jr., and Bewersdorf, J. 2011. Two‐color STED microscopy in living cells. Biomed. Optics Expr. 2:2364‐2371.
   Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., and Betzig, E. 2011. Rapid three‐dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417‐423.
   Punge, A., Rizzoli, S.O., Jahn, R., Wildanger, J.D., Meyer, L., Schönle, A., Kastrup, L., and Hell, S.W. 2008. 3D reconstruction of high‐resolution STED microscope images. Microscopy Res. Techn. 71:644‐650.
   Rankin, B.R., Kellner, R.R., and Hell, S.W. 2008. Stimulated‐emission‐depletion microscopy with a multicolor stimulated‐Raman‐scattering light source. Optics Lett. 33:2491‐2493.
   Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., and Hell, S.W. 2009. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3:144‐147.
   Rust, M.J., Bates, M., and Zhuang, X. 2006. Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793‐795.
   Schermelleh, L., Carlton, P.M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M.C., Agard, D.A., Gustafsson, M.G., Leonhardt, H., and Sedat, JW. 2008. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332‐1336.
   Schmidt, R., Wurm, C.A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S.W. 2008. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5:539‐544.
   Schrader, M. and Hell, S.W. 1996. 4Pi‐confocal images with axial superresolution. J. Microscopy 183:110‐115.
   Schrader, M., Bahlmann, K., Giese, G., and Hell, S.W. 1998. 4Pi‐confocal imaging in fixed biological specimens. Biophysical J. 75:1659‐1668.
   Sengupta, P., Jovanovic‐Talisman, T., Skoko, D., Renz, M., Veatch, S.L., and Lippincott‐Schwartz, J. 2011. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8:969‐975.
   Shao, L., Kner, P., Rego, E.H., and Gustafsson, M.G. 2011. Super‐resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8:1044‐1046.
   Shcherbo, D., Merzlyak, E.M., Chepurnykh, T.V., Fradkov, A.F., Ermakova, G.V., Solovieva, E.A., Lukyanov, K.A., Bogdanova, E.A., Zaraisky, A.G., Lukyanov, S., and Chudakov, D.M. 2007. Bright far‐red fluorescent protein for whole‐body imaging. Nat. Methods 4:741‐746.
   Shroff, H., Galbraith, C.G., Galbraith, J.A., White, H., Gillette, J., Olenych, S., Davidson, M.W., and Betzig, E. 2007. Dual‐color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. U.S.A. 104:20308‐20313.
   Shroff, H., Galbraith, C.G., Galbraith, J.A., and Betzig, E. 2008. Live‐cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5:417‐423.
   Shtengel, G., Galbraith, J.A., Galbraith, C.G., Lippincott‐Schwartz, J., Gillette, J.M., Manley, S., Sougrat, R., Waterman, C.M., Kanchanawong, P., Davidson, M.W., Fetter, R.D., and Hess, H.F. 2009. Interferometric fluorescent super‐resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U.S.A. 106:3125‐3130.
   Sieber, J.J., Willig, K.I., Heintzmann, R., Hell, S.W., and Lang, T. 2006. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophysical J. 90:2843‐2851.
   Stiel, A.C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S.W., Jakobs, S., and Wahl, M.C. 2007. 1.8 A bright‐state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402:35‐42.
   Subach, F.V., Patterson, G.H., Manley, S., Gillette, J.M., Lippincott‐Schwartz, J., and Verkhusha, V.V. 2009. Photoactivatable mCherry for high‐resolution two‐color fluorescence microscopy. Nat. Methods 6:153‐159.
   Subach, F.V., Patterson, G.H., Renz, M., Lippincott‐Schwartz, J., and Verkhusha, V.V. 2010. Bright monomeric photoactivatable red fluorescent protein for two‐color super‐resolution sptPALM of live cells. J. Am. Chem. Soc. 132:6481‐6491.
   Subach, O.M., Patterson, G.H., Ting, L.M., Wang, Y., Condeelis, J.S., and Verkhusha, V.V. 2011. A photoswitchable orange‐to‐far‐red fluorescent protein, PSmOrange. Nat. Methods 8:771‐777.
   Testa, I., Garrè, M., Parazzoli, D., Barozzi, S., Ponzanelli, I., Mazza, D., Faretta, M., and Diaspro, A. 2008. Photoactivation of pa‐GFP in 3D: Optical tools for spatial confinement. Eur. Biophysics J. 37:1219‐1227.
   Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. and Miyawaki, A. 2005. Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Reports 6:233‐238.
   Van de Linde, S., Kasper, R., Heilemann, M., and Sauer, M. 2008a. Photoswitching microscopy with standard fluorophores. Appl. Phys. B 93:725‐731.
   van de Linde, S., Sauer, M., and Heilemann, M. 2008b. Subdiffraction‐resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J. Struct. Biol. 164:250‐254.
   van de Linde, S., Endesfelder, U., Mukherjee, A., Schüttpelz, M., Wiebusch, G., Wolter, S., Heilemann, M., and Sauer, M. 2009. Multicolor photoswitching microscopy for subdiffraction‐resolution fluorescence imaging. Photochem. Photobiol. Sci. 8:465‐469.
   van de Linde, S., Krstić, I., Prisner, T., Doose, S., Heilemann, M., and Sauer, M. 2011. Photoinduced formation of reversible dye radicals and their impact on super‐resolution imaging. Photochem. Photobiol. Sci. 10:499‐506.
   Vaziri, A., Tang, J., Shroff, H., and Shank, C.V. 2008. Multilayer three‐dimensional super resolution imaging of thick biological samples. Proc. Natl. Acad. Sci. U.S.A. 105:20221‐20226.
   Verkhusha, V.V. and Sorkin, A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12:279‐85.
   Vicidomini, G., Moneron, G., Han, K.Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., and Hell, S.W. 2011. Sharper low‐power STED nanoscopy by time gating. Nat. Methods 8:571‐573.
   Westphal, V. and Hell, S.W. 2005. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94:143903.
   Westphal, V., Kastrup, L., and Hell, S.W. 2003. Lateral resolution of 28nm (lambda/25) in far‐field fluorescence microscopy. Appl. Phys. B 77:377‐380.
   Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R., and Hell, S.W. 2008. Video‐rate far‐field optical nanoscopy dissects synaptic vesicle movement. Science 320:246‐249.
   Wildanger, D., Rittweger, E., Kastrup, L., and Hell, S.W. 2008. STED microscopy with a supercontinuum laser source. Optics Expr. 16:9614‐9621.
   Wildanger, D., Medda, R., Kastrup, L., and Hell, S.W. 2009. A compact STED microscope providing 3D nanoscale resolution. J. Microscopy 236:35‐43.
   Willig, K.I., Kellner, R.R., Medda, R., Hein, B., Jakobs, S., and Hell, S.W. 2006a. Nanoscale resolution in GFP‐based microscopy. Nat. Methods 3:721‐723.
   Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R., and Hell, S.W. 2006b. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935‐939.
   Willig, K.I., Harke, B., Medda, R., and Hell, S.W. 2007. STED microscopy with continuous wave beams. Nat. Methods 4:915‐918.
   Wolter, S., Schüttpelz, M., Tscherepanow, M., van de Linde, S., Heilemann, M., and Sauer, M. 2010. Real‐time computation of subdiffraction‐resolution fluorescence images. J. Microscopy 237:12‐22.
   Wombacher, R., Heidbreder, M., van de Linde, S., Sheetz, M.P., Heilemann, M., Cornish, V.W., and Sauer, M. 2010. Live‐cell super‐resolution imaging with trimethoprim conjugates. Nat. Methods 7:717‐719.
   Xu, K., Babcock, H.P., and Zhuang, X. 2012. Dual‐objective STORM reveals three‐dimensional filament organization in the actin cytoskeleton. Nat. Methods 9:185‐188.
   Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., and Selvin, P.R. 2003. Myosin V walks hand‐over‐hand: Single fluorophore imaging with 1.5‐nm localization. Science 300:2061‐2065.
   York, A.G., Ghitani, A., Vaziri, A., Davidson, M.W., and Shroff, H. 2011. Confined activation and subdiffractive localization enables whole‐cell PALM with genetically expressed probes. Nat. Methods 8:327‐333.
   Zhang, R., Rothenberg, E., Fruhwirth, G., Simonson, P.D., Ye, F., Golding, I., Ng, T., Lopes, W., and Selvin, P.R. 2011. Two‐photon 3D FIONA of individual quantum dots in an aqueous environment. Nano Lett. 11:4074‐4078.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library