Method for Visualizing Aerosol Contamination in Flow Sorters

Andrew S. Oberyszyn1

1 The Ohio State University Comprehensive Cancer Center, Analytical Cytometry Shared Resource Laboratory, Ohio State University, Columbus, Ohio
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 3.5
DOI:  10.1002/0471142956.cy0305s19
Online Posting Date:  February, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The routine operation of a flow cytometer generates aerosols, and most commercially available instrument are not designed to be 100% effective in their elimination. Aerosols are a concern for operators as well as for others in the facility because of the potential for exposure to contamination, especially during sorting of biohazardous samples. This unit describes a visual method for examining aerosol containment using a commercial resin that fluoresces under UV or black light illumination. The method is rapid, inexpensive, and simple. Results are immediate and potentially quantitative

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Glo Germ melamine copolymer resin (Glo Germ)
  • 95% and 100% ethanol
  • PBS without calcium or magnesium (PBS (−)) containing 10% filtered fetal bovine serum (FBS; appendix 2A or Life Technologies)
  • 100% acetone
  • 15‐ml conical tubes (Falcon)
  • Deflected‐droplet cell sorter to be tested
  • Black light source (e.g., GE Bright Stik)
  • Microscope slides
  • Kimwipes (or any low‐lint/lint‐free paper)
  • Fluorescent microscope (with DAPI or FITC exciter filter)
  • 12 × 75–mm culture tubes (Falcon)
  • Tubing (∼1.3‐mm i.d.)
  • Compressed air with thin extension tube
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Almeida, J.D., Kulatilake, A.E., Makay, D.H., Shackman, R., Chisholm, G.D., MacGregor, A.B., O'Donoghue, E.P., and Waterson, A.P. 1971. Possible airborne spread of serum‐hepatitis virus within a hemodialysis unit. Lancet 2:849‐850.
   Anderson, A.A. 1958. New sampler for the collection, sizing and enumeration of viable airborne particles. J. Bacteriol. 76:471‐484.
   Bakker, A.M. 1992. Evaluation of a biological containment system for a fluorescent activated cell sorter. M.S. Thesis. University of San Francisco.
   Ferbas, J., Chadwick, K.R., Logar, A., Patterson, A.E., Gilpin, R.W., and Margolick, J.B. 1995. Assessment of aerosol containment on the ELITE Flow Cytometer. Cytometry 22:45‐47.
   Giorgi, J.V. 1994. Cell sorting of biohazardous specimens for assay of immune function. Methods Cell Biol. 42:359‐369.
   Ijaz, M.K., Sattar, S.A., Alkarmi, T., Dar, F.K., Bhatti, A.R., and Elhag, K.M. 1994. Studies on the survival of aerosolized bovine rotavirus (UK) and a murine rotavirus. Comp. Immunol. Microbiol. Inf. Dis. 17:91‐98.
   Merril, J.T. 1981. Evaluation of selected aerosol‐control measures on flow cytometers. Cytometry 1:342‐345.
   Oberyszyn, A.S. and Robertson, F.M. 2001. Novel rapid method for visualization of extent and location of aerosol contamination during high‐speed sorting of potentially biohazardous samples. Cytometry 43:217‐222.
   Sattar, S.A. and Ijaz, M.K. 1987. Spread of viral infections by aerosols. CRC Crit. Rev. Environ. Control 17:89‐131.
   Schmid, I., Nicholson, J.K., Giorgi, J.V., Janossy, G., Kunkl, A., Lopez, P.A., Perfetto, S., Seamer, L.C., and Dean, P.N. 1997. Biosafety guidelines for sorting of unfixed cells. Cytometry 28:99‐117.
   Schoenbaum, M.A., Zimmermann, J.J., Beran, G.W., and Murphy, D.P. 1990. Survival of pseudorabies virus in aerosol. Am. J. Vet. Res. 51:331‐333.
PDF or HTML at Wiley Online Library